
565

0022-4715/03/0500-0565/0 © 2003 Plenum Publishing Corporation

Journal of Statistical Physics, Vol. 111, Nos. 3/4, May 2003 (© 2003)

Closure Approximations for Passive Scalar
Turbulence: A Comparative Study on an Exactly
Solvable Model with Complex Features

Peter R. Kramer,1 Andrew J. Majda,2 and Eric Vanden-Eijnden2

1 Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, New York
12180; e-mail: kramep@rpi.edu

2 Courant Institute of Mathematical Sciences, New York University, New York, New York.

Received December 7, 2001; accepted September 13, 2002

Some standard closure approximations used in turbulence theory are analyzed
by examining systematically the predictions these approximations produce for a
passive scalar advection model consisting of a shear flow with a fluctuating
cross sweep. This model has a general geometric structure of a jet flow with
transverse disturbances, which occur in a number of contexts, and it encom-
passes a wide variety of possible spatio-temporal statistical structures for the
velocity field, including strong long-range correlations. Even though the Eulerian
and Lagrangian velocity statistics are not equal and the passive scalar statistics
exhibit broader-than-Gaussian intermittency, this model is nevertheless simple
enough so that many passive scalar statistics can be computed exactly and
compared systematically with the predictions of the closure approximations.
Our comparative study illustrates the strength and weaknesses of the closure
approximations and points out the physical phenomena that these approxima-
tions are able or not able to describe properly. In particular it is shown that the
direct interaction approximation (DIA), one of the most sophisticated closure
approximations available, fails to reproduce adequately the statistical features of
the scalar and may even lead to absdurd predictions, even though the equations
it produces are rather complicated and difficult to analyze. Two alternative
closure approximations, the Modified DIA (MDIA) and the Renormalized
Lagrangian Approximation (RLA), with different levels of sophistication, both
are simpler to use than the DIA and perform better. In particular, it is shown
that both closure approximations always reproduce exactly the second order
statistics for the scalar and that the MDIA is even able to capture intermittency
effects.

KEY WORDS: Passive scalar turbulence; closure approximations; direct
interaction approximation; intermittency.



1. INTRODUCTION

The difficulties inherent in turbulence modeling are often summarized by
the moment closure problem. (44, 51) We will consider this issue in the context
of the evolution of a passive scalar field T(r, t) advected by a velocity field
v(r, t). The scalar field T describes the concentration of some physical sub-
stance immersed in the fluid which is carried with the local fluid velocity
but which does not itself significantly influence the dynamics of the fluid.
The immersed physical substance may be dye, contaminants, heat, etc., and
the passive scalar model has numerous applications in geophysical science
and engineering. (14, 15, 44, 51, 53, 54) The passive scalar field will typically also
have some intrinsic self-diffusivity o due to microscopic Brownian motion.
The dynamics of the passive scalar field are then defined by the following
linear advection-diffusion equation:

“T
“t

+v · NT=o DT. (1)

Solving Eq. (1) is a challenge when the molecular diffusivity o is small and
the fluid is in a turbulent state, meaning that the velocity field v is excited
on a very wide range of spatio-temporal scales. For instance, v might solve
Navier–Stokes equation at very high Reynolds number. Then indeed the
scalar field T inherits the very complicated structure of v and it is usually
not possible to describe its behavior in detail. On the other hand, while
such a detailed description is impossible, it is also not very useful since one
is typically interested only in the behavior of T on spatio-temporal scales
much larger than the finest ones that T inherits from v. In other words, we
would like to derive a closed expression for the mean scalar field

OT(r, t)P

where O ·P denotes some projection, or averaging, operation which removes
the finest scales. This, however, is where the moment closure problem
arises. Indeed, taking a direct average of Eq. (1) in an attempt to find an
equation for OTP results in:

“OTP
“t

+Ov · NTP=o DOTP. (2)

This equation involves the unknown correlation function OvTP in addition
to the mean passive scalar density OTP which is being sought. Writing
down the equation for OvTP does not help since this equation involves the
unknown correlation function OvvTP, and so on. Thus, direct averaging
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of the transport equation in (1) leads to an infinite hierarchy of equations
for the correlation functions, and there is no known way to write down a
finite closed system of equations for correlation functions of T, except in
very special situations such as when the velocity field fluctuates on much
smaller spatio-temporal scales than the passive scalar field (refs. 3, 8, 12,
19, 18, 30, 31, 37, 40, 46, 48, 50, 52, 56, 59, 74). For a recent review, see
Chapter 2 of ref. 49. Turbulent flows in most applications do not enjoy
such scale separation properties.

To grapple with the moment closure problem in turbulence, a number
of closure approximations have been proposed. These procedures implement
some particular ansatz about the unknown correlation functions at some
level so as to yield a set of closed equations for the correlation functions
up to a given order. The most common closure approximations bear the
names of Quasi-Normal Approximation (QNA), (10, 11, 60, 65, 69) Quasi-Linear
Approximation (QLA), (67–69) Direct Interaction Approximation (DIA). (32–34, 63)

In addition to these ones, we will also consider in this paper the Modified
Direct Interaction Approximation (MDIA), (71) and the Renormalized
Lagrangian Approximation (RLA) (13, 47, 64) (see refs. 41, 45, 51, and 57 for
general presentations). Despite the possibility of their systematic derivation
from a perturbation series (they all fit within the so-called Zwanzig–Mori
formalism, see Appendix A), none of these closure approximations are
rigorous. Moreover, the equations they produce can be quite complicated
and their consequences obscure. The quality of the closure approximations
therefore must be assessed in some a posteriori manner. One possibility is
to compare their theoretical predictions with data from experiments (57) or
direct numerical simulations. (26, 27) Another possibility is to test the closure
approximations on exactly solvable models with nontrivial behaviors. This
route was already taken by Avellaneda and one of the present authors in
ref. 4, where the QNA, DIA, and a renormalization group-based closure
scheme were studied asymptotically at large times on a simple shear model
where the Eulerian and Lagrangian correlations in the velocity field are
identical. This paper will proceed with much the same philosophy, using a
model with more flexibility in the flow structure to assess systematically the
performance of all the aforementioned closure approximations. In particu-
lar, a key feature of the models introduced here is that the Eulerian and
Lagrangian correlations for the velocity field do not coincide, in contrast to
the models from ref. 4. Also, we develop results both at finite times and at
asymptotically large times as in ref. 4. To the best of our knowledge such a
systematic comparative study has not yet been undertaken, though it
clearly illustrates the strengths and weaknesses of the closure approxima-
tions by pointing out the physical phenomena that these approximations
are able or not able to describe properly. The outcomes of our analysis of
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the closure approximations are summarized in the conclusion (Section 6)
and in more detail at the beginning of each relevant section.

The model flow which we will consider is the Shear Flow with Cross
Sweep (SFCS) model introduced by two of the authors in ref. 49, Section 3.
In this model, to be described in more detail in Section 2, it is assumed that
the turbulent flow is a two-dimensional Gaussian random field which is a
superposition of a spatially uniform but possibly temporally fluctuating
cross sweep in the x direction, and a random shear flow (with fluctuations
possible in both time and spatial x direction) in the y direction:

v(x, y, t)=1 w(t)
v(x, t)

2 (3)

The SFCS model has a number of properties which make it an excellent
test model for closure approximations. First of all, the geometry is suffi-
ciently simple to permit a great deal of exact analysis for the scalar field
advected by it (refs. 2, 5, 6, 28 and ref. 49, Section 3). A second virtue of
the SFCS model is that it is flexible enough to admit several physically
realistic and important features. For instance, the general geometric struc-
ture of the model (3) may be viewed as a particular approximation to a jet
flow with transverse disturbances, which occur in a number of contexts.
For example, deterministic versions of these models have been utilized
recently (9) to demonstrate explicitly the wide variety of intermittent PDF’s
which can describe passive scalars with a mean gradient including PDF’s
which occur in vastly more complicated experiments and numerical simu-
lations (see the references in ref. 9). The SFCS model is also one of the
simplest models for which the Lagrangian velocity, that is, the velocity
measured by a tracer particle moving in the flow, has a different statistical
structure than the Eulerian velocity observed at a fixed position (as defined
in Eq. (3)). The combination of flexibility and analytical tractability of the
model permits a precise elucidation of a number of subtle ways in which
a turbulent velocity field influences the scalar field (refs. 2 and 28 and
ref. 49, Section 3).

The remainder of this paper is organized as follows. In Section 2 we
introduce the SFCS model and derive some exact, explicit formulas for the
mean scalar field OTP and related quantities in this model. In Section 3, we
derive the equations for the mean scalar field OTP predicted by various
closure approximations for the same model, and make general observations
regarding the agreement between the closure approximations and the exact
formulas when the correlation functions of the velocity in (4) are con-
sidered to be arbitrary. Thereafter, we will explore the ways in which the
specific form of the velocity correlation functions influences passive scalar
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transport. To this end, in Section 4 we introduce a specialized version of
the SFCS model, which we call the Infrared Scaling Shear Flow with Cross
Sweep (IS-SFCS) model. The IS-SFCS model is broad enough that it
allows for finite or infinite correlation length or time in the velocity field.
We use the IS-SFCS model to focus particularly on the coarse-grained
behavior at large space and long time scales, which is often of fundamental
relevance in applications. We apply a systematic renormalization proce-
dure, previously described in refs. 2, 5, and 48, to the closure approxima-
tions to derive effective equations on large scales and long times. These can
be compared with the equations arising from a rigorous, exact renor-
malization, (2, 5, 6) which fall into several qualitative categories described
in detail. Next, in Section 5, we study the detailed long-time asymptotic
behavior of the fourth order cumulant m0, 4(t) of the shear-parallel displa-
cement of a passive tracer advected by the IS-SFCS flow. Indeed, this
quantity offers the simplest quantitative description of the shape of the
probability density function (PDF) for the displacement of a tracer. We
can thereby assess quantitatively how well the closure approximations
model this PDF shape at long times. We offer some concluding remarks
and overall assessments of the closure approximations in Section 6.
Appendix A provides a general, formal description of the closure approx-
imations studied in this paper, and some technical calculations are collected
in Appendices B, C and D.

2. A CLASS OF MODEL SHEAR FLOWS

We will examine the performance of the various passive scalar closure
approximations within the Shear Flow with Cross Sweep (SFCS) model.
The SFCS model is introduced in Section 2.1. In Section 2.2, we relate the
mean scalar field density OTP to the probability density function (PDF) of
a tracer particle advected by the random flow and subject to molecular
diffusion, and we give an exact representation formula for this PDF in the
context of the SFCS model. From this representation, we show in Sec-
tion 2.3 how to deduce explicit analytical representations for all moments
of the tracer displacements, and explicitly display some which we will
compare with the predictions of the closure approximations in subsequent
sections. We will compare and contrast how these effects are manifested in
the closure approximations in Section 3.

2.1. The Shear Flow with Cross Sweep (SFCS) Model

As mentioned in the Introduction, the turbulent flow in the SFCS
model is taken to be a two-dimensional Gaussian random field which is a
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superposition of a spatially uniform but possibly temporally fluctuating
cross sweep in the x direction and a random shear flow (with fluctuations
possible in both time and space x direction) in the y direction (ref. 49, Sec-
tion 3),

v(x, y, t)=1 w(t)
v(x, t)

2 . (4)

The sweeping component w(t) is modeled as a zero-mean, statistically sta-
tionary, Gaussian random process with correlation function denoted by

Rw(t)=Ow(tŒ+t) w(tŒ)P, (5)

where here and below O ·P denotes ensemble averaging with respect to the
statistics of the velocity field. The shearing component v(x, t) will be
modeled as a zero-mean, statistically homogenous and stationary Gaussian
random process, statistically independent of w(t), and with spatio-temporal
correlation function denoted by

Rv(x, t)=Ov(xŒ+x, tŒ+t) v(xŒ, tŒ)P

It will be convenient to represent Rv(x, t) in terms of the spectral-temporal
correlation function E(k, t) defined through

Rv(x, t)=F
R

e ikxE(k, t) dk. (6)

E(k, t) describes precisely the temporal correlations of the shear velocity
mode with wavenumber k. At zero time delay, this function is equal to the
traditional energy spectrum E(k, t=0)=Ē(|k|) which is a nonnegative
function describing the spectral density of energy with respect to spatial
wavenumber (refs. 44, 66 and ref. 49, Section 3).

No special assumptions on the correlation functions Rw(t) and
Rv(x, t) (or E(k, t)) are necessary for the analysis, but for simplicity we
shall assume that v(x, t) has statistical symmetry under x Q − x and
t Q − t independently. Then the correlation functions satisfy

Rw(t)=Rw(−t), Rv(x, t)=Rv(−x, t)=Rv(x, −t). (7)

In terms of spectral-temporal correlation function this reads E(k, t)=
E(−k, t)=E(k, −t).

The cross sweep w(t) can have strong effects on the motion of a tracer
along a shear (refs. 5, 9, 28 and ref. 49, Section 3). When there is no cross
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sweep and molecular diffusion is small, the tracer is transported very
rapidly along the streamlines of the velocity field v(x, y, t) which extend
unboundedly in the y direction. On the other hand, when w(t) is non-
vanishing, then the streamlines of the flow are disrupted and transport of
the passive scalar is impeded along the shearing direction y (see Fig. 1 and
ref. 28. When the sweeping component w(t) is fluctuating and passing
through zero at various moments of time, the tracer motion is then
governed by an interesting combination of rapid transport periods (when
w(t) is very small) and blocking periods (when w(t) is large), ref. 49,
Section 2.2.

We note that the inclusion of a nonzero constant mean velocity field
could be incorporated in our analysis, but we will refrain from doing so
to keep formulas simple. All closure approximations we consider can be
shown to transform in the correct manner under the addition of such a
constant mean sweep, so we do not gain any further information for our
purposes by including it.
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Fig. 1. Instantaneous streamlines of a shear flow with cross sweep: v(x, y, t)=(w(t), v(x, t))
at a moment when w(t)=1. The shear flow v(x, t) has energy spectrum Ē(k)=k2e−k and is
simulated by a Fourier method (ref. 16 and ref. 49, Section 6) with 1000 wavenumber modes
with spacing Dk=0.01.
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2.2. Functional Average Representation for Green’s Function

For the moment, we study the general case described by the advection-
diffusion equation in (1). It will be convenient to consider the solution
of this equation for the special initial condition of a Dirac distribution
function centered at point r=r − at time t=tŒ. Assuming spatio-temporal
homogeneity of the velocity field v(r, t), the solution of Eq. (1) for this
initial condition depends only on the differences r − r − and t − tŒ, and we
shall denote it by G(r − r −, t − tŒ). The mean scalar field OT(r, t)P for an
arbitray initial condition T(r, t=tŒ)=T0(r), possibly random but statisti-
cally independent of the velocity v, can be expressed in terms of G via the
superposition formula

OT(r, t)P=F
R

d
G(r − r −, t − tŒ)OT0(r −)P0 dr −. (8)

where O ·P0 denotes ensemble-averaging with respect to the statistics of the
initial condition. The function G will be refered to as the (ensemble-
averaged) Green’s function and it has a very simple probabilistic interpre-
tation as the probability density function (PDF) of a tracer advected by the
flow and subject to molecular diffusion. The trajectory of a tracer, R(t), is
governed by the stochastic differential equation (SDE)

dR(t)=v(R(t), t) dt+`2o dW(t), R(0)=0. (9)

Molecular diffusion is represented here through a d-dimensional (d=2, 3)
Wiener process W(t), a Gaussian random process with independent incre-
ments satisfying W(0)=0, OdW(t)P=0, OdW(t) é dW(tŒ)P=Id(t−tŒ) dt dtŒ
where I is the identity matrix. (42) In terms of R(t), we have the representa-
tion formula

G(r, t)=
1

(2p)d F
R

d
e−ik · rĜ(k, t) dk, (10)

where

Ĝ(k, t)=Oe ik · R(t)Pv, W. (11)

Here O ·Pv, W denotes expectation over both the statistics of v and W. The
function Ĝ is the characteristic function for the process R(t). In what
follows we shall focus on studying G (or Ĝ) owing to its primary impor-
tance and easy probabilistic interpretation.
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Coming back to the SFCS model, Ĝ is given by

Ĝ(k, p, t)=Oe−ikX(t) − ipY(t)P. (12)

Here R(t) — (X(t), Y(t)) satisfies

˛dX(t)=w(t) dt+`2o dWx(t), X(0)=0,

dY(t)=v(X(t), t) dt+`2o dWy(t), Y(0)=0,
(13)

where Wx(t) and Wy(t) are two independent Wiener processes. For every
realization of the random velocity field and the random molecular motion,
the equation of motion for X(t) in (13) is trivially integrated, and then
substituted into the equation for Y(t) in (13), which is solved by quadrature:

˛X(t)=F
t

0
w(s) ds+`2o Wx(t),

Y(t)=F
t

0
v(X(s), s) ds+`2o Wy(t).

(14)

Consequently, the tracer position (X(t), Y(t)) can be expressed as an
explicit functional of the random fields, ref. 49, Section 3. Alternatively, the
Green’s function for the advection-diffusion equation (before averaging
over the velocity statistics) can be written precisely in terms of a functional
average over an ensemble of Wiener processes. (2)

Writing out the explicit expression for Y(t) from (14), breaking up the
full average into successive averages over the statistics of Wy(t), Wx(t), and
v(x, t), and pulling out factors which are independent of the inner partial
averages, we have:

Ĝ(k, p, t)=7exp 5− ikX(t) − ip 1F
t

0
v(X(s), s) ds+`2o Wy(t)268

=7e−ikX(t) 7exp 5− ip F
t

0
v(X(s), s) ds68

v

8
w, Wx

Oe−ip `2o Wy(t)PWy
.

Subscripts on the averaging symbol O ·P denote a partial average over the
stochastic process(es) listed. The averages over v and Wy (with X(t) held
fixed in a given realization) are each characteristic functions of Gaussian
random variables which can be computed explicitly, ref. 25, Section 2.13:

Ĝ(k, p, t)=e−op2t7e−ikX(t) exp 5−
1
2

p2 F
t

0
F

t

0
Rv(X(s)−X(sŒ), s−sŒ) ds dsŒ68

w, Wx

.

(15)
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We are not aware of how to perform the average in (15) explicitly in the
general case, but this expression will be used to compute the cumulants in
Section 2.3. Note also that for somewhat trivial case where the shearing
component of the flow has white-noise temporal dynamics (Rv(x, t)=
R̄v(x) d(t)), the average in (15) can be computed to give

Ĝ(k, p, t)=e−k2(ot+> t
0 ds(t − s) Rw(s) ds − p2(o+1

2 R̄v(0)) t, (16)

implying that the process (X(t), Y(t)) is Gaussian, with no statistical
influence of X(t) on Y(t) (i.e., no statistical coupling between the sweeping
and the shearing components of the flow). Another straightforward con-
sequence of Eq. (15) is that the characteristic function corresponding to the
random process X(t) alone is given by

Ĝx(k, t) — Ĝ(k, p=0, t)=e−k2(ot+> t
0 (t − s) Rw(s) ds). (17)

In particular, X(t) is a Gaussian random process.

2.3. Cumulants for the General Case

A great deal of information about the PDF for the tracer displacement
can be obtained by considering the cumulants defined in terms of the
characteristic function Ĝ(k, p, t) as

ma, b(t)=(−i)a+b 5 “
a+b

“ka
“pb ln Ĝ(k, p, t)6

k=p=0
, (18)

where a and b are nonnegative integers. The cumulants ma, b(t) are some-
times equivalently defined as the ‘‘connected’’ parts of the moments
OXa(t) Yb(t)P. (62) The cumulants contain the same information as the
moments themselves, but are easier to interpret because a cumulant of a
given order (a, b) is constructed in such a way as to give information
not redundant with that provided by the cumulants of lower order. For
instance, in the SFCS model, we have (see Proposition 1 later)

˛m0, 2(t)=OY2(t)P,

m0, 4(t)=OY4(t)P− 3OY2(t)P2.

Thus, m0, 2(t) is the mean square displacement of the tracer in the shear-
parallel (y) direction, while m0, 4(t) is a measure of the departure from
Gaussianity of the PDF of Y(t) since a Gaussian PDF for Y(t) would have
m0, 4(t)=0. We shall compare the performance of the closure approximations
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on a set of cumulants broader than m0, 2(t) and m0, 4(t) (see Proposition 1
later) but we will focus mainly on these since they provide a severe test for
the closure approximations (see Section 5).

The cumulants of the tracer displacement in the SFCS model can be
computed exactly using Eq. (18) and the expression in (15) for Ĝ. For sim-
plicity we shall only give explicit expressions for a selected subset of them:

Proposition 1.

˛
ma, b(t)=0 when a or b is odd,

m2, 0(t)=2ot+2 F
t

0
(t − s) Rw(s) ds,

ma, 0(t)=0 for a \ 3,

m0, 2(t)=2ot+4 F
t

0
ds(t − s) F

.

0
dq E(q, s) e−1

2 q2m2, 0(s),

m2m, 2(t)=2(−)m F
t

0
ds F

s

0
dsŒ M2m

x (t, 0; s, sŒ)

× F
R

dq q2mE(q, s − sŒ) e−1
2 q2m2, 0(s − sŒ) for m \ 1,

m0, 4(t)=3 F
t

0
ds1 F

t

0
ds2 F

t

0
ds3 F

t

0
ds4 F

R
2

dq dqŒ

× E(q, s1 − s2) E(qŒ, s3 − s4)(e−qqŒMx(s1, s2; s3, s4) − 1)

× e−1
2 q2m2, 0(s1 − s2) − 1

2 qŒ2m2, 0(s3 − s4),

(19)

where

Mx(t1, t2; t3, t4)=F
t1

t2

ds F
t3

t4

dsŒ(Rw(s − sŒ)+2od(s − sŒ)), (20)

This proposition is derived in Appendix B. We observe the following:

1. The mean-square displacement of a tracer in the shear-parallel (y)
direction, m0, 2(t), is extensively analyzed for the present model in ref. 49,
Sections 3.2 and 3.3. Here we mention only that the random fluctuations
in the cross-shear transport, reflected in m2, 0(t), clearly serve to reduce the
efficacy of transport in the shear-parallel direction.

2. It is evident from the formulas for m0, 2(t) and m0, 4(t) in (19) that
m0, 2(t) > 0 and m0, 4(t) > 0 when E(q, t) \ 0, and there is some random
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cross-shear transport (o > 0 or w(t) ] 0). Of course, we know from first
principles that m0, 2(t) is non-negative in general because it is the variance
of the shear-parallel tracer displacement, and only vanishes if there are no
random fluctuations. More interestingly, one can prove by abstract pro-
babilistic reasoning that m0, 4(t) is non-negative in general for the SFCS
model, and is positive whenever o > 0 or w(t) ] 0. A positive value for
m0, 4(t) indicates a PDF which is broader-than-Gaussian, meaning that the
shear-parallel tracer displacement has a larger probability for large excur-
sions relative to its standard deviation than a Gaussian distribution would.
The reason why m0, 4(t) \ 0 in the SFCS model is that the shear-parallel
tracer displacement Y(t) in (14), conditioned on a particular realization of
X(t), is a mean zero Gaussian random variable. Averaging then over X(t),
we find that Y(t) can be represented as a random mixture of mean-zero
Gaussian random variables. All fourth and higher even order cumulants
for such a random mixture are zero if all the variances of the Gaussian
random variables coincide, and strictly positive otherwise, ref. 49, p. 466.

3. Suppose we start with a system with no molecular diffusion. Then
the addition of molecular diffusivity o > 0 is equivalent to making every-
where the following replacements in the formulas for the statistics of a
single tracer:

˛Rw(t) Q Rw(t)+2od(t),

E(k, t) Q E(k, t)+2od(k) d(t).
(21)

The transformation for E(k, t) is associated with the following transfor-
mation to the physical-space correlation function of the shear flow:

Rv(x, t) Q Rv(x, t)+2od(t).

The reader will note from Proposition 1 that o only enters the cumulants
m2, 0(t) and m0, 2(t), and can verify that indeed the formulas for the other
cumulants are invariant under the transformation (21). The above trans-
formation properties of the tracer statistics under molecular diffusion may
be summarized by saying that molecular diffusion acts equivalently as an
independent Gaussian random sweeping motion (in both x and y direc-
tions) which is delta-correlated in time, i.e., white noise. Indeed this is
evident from the stochastic differential equations for the trajectory (14).

3. SOME CLOSURE APPROXIMATIONS FOR THE MODEL

In this section we apply five closure approximations to the advection-
diffusion equation (1) associated with the SFCS flow. The general formalism
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of the closure approximations are derived in Appendix A. We examine here
the basic properties of the equations and solutions which these closure
approximations generate, and compare them with the exact results devel-
oped in Section 2. Our main conclusions are:

• the QLA and QNA suffer from a qualitative failure to represent the
important physical influence of the random cross sweep on the tracer
transport along the shear.

• the DIA performs better than the QLA and QNA in this respect,
though it does not produce exact results even for the low order cumulants.
The DIA also gives rather complicated equations which are difficult to
analyze even for the second order cumulants.

• the MDIA matches the exact results for the passive scalar statistics
in a larger class of flows within the Shear Flow with Cross Sweep model
and to a greater extent than any other closure approximations considered.

• the RLA is a relatively simple closure approximation which produ-
ces exact predictions for the cumulants of the tracer displacement through
third order, but oversimplifies the higher order statistics by always predict-
ing a Gaussian PDF.

More detailed analytical assessments of these closure approximations will
follow in subsequent sections.

The basic structure of the equations produced by the closure approx-
imations are most readily grasped when there is no molecular diffusion
(o=0), so in the discussion of each closure approximation we begin first
with the equations for this case. The full equations, including the possibility
o > 0, will be presented at the end of each subsection on a closure approx-
imation, and will be utilized in subsequent sections.

The following quantities defined in terms of the correlation functions
of the sweeping and the shearing components of the velocity field enter the
formulas below repeatedly:

˛D (0)
x (t)=F

t

0
Rw(s) ds,

D (0)
y (t)=F

t

0
Rv(0, s) ds=F

t

0
F

R
E(q, s) dq ds,

D (o)
y (t)=F

t

0
F

R
E(q, s) e−oq2s dq ds.

(22)

They are just the exact time-dependent diffusivities in the x and y direc-
tions; the (0) subscript indicates a specialization to the case o=0.
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3.1. The Quasinormal Approximation (QNA)

Historically the QNA was the first closure approximation intro-
duced. (10, 11, 60, 65, 69) The QNA bears its name from the fact that it utilizes an
(uncontrolled) assumption of Gaussianity for the evaluation of the triple
moment, OvvTP % OvvPOTP, in the equation for the second order moment
OvTP. In terms of the Green’s function, the QNA equation leads at o=0 to
a convolutive linear differential equation for ĜQNA=ĜQNA(k, p, t):

“ĜQNA

“t
=−k2 F

t

0
Rw(s) ĜQNA(k, p, t − s) ds − p2 F

t

0
Rv(0, s) ĜQNA(k, p, t − s) ds,

(23)

with ĜQNA |t=0=1 and where we have used Eq. (6) to set >R E(q, t) dq=
Rv(0, t). See Appendix A.1 later for a general derivation of Eq. (23). The
QNA equation is naturally solved via a Laplace transform, generally
defined by

f̃(z)=F
.

0
e−ztf(t) dt,

to give:

G̃QNA(k, p, z)=[z+k2R̃w(z)+p2R̃v(0, z)]−1. (24)

The Laplace transform of the cumulants of the passive scalar displa-
cement can be computed from derivatives of ln G̃QNA(k, p, z). In the time
representation, the expressions for the mQNA

2m, 2n(t) are rather cumbersome and
we only give the expressions for the first few:

˛
mQNA

2, 0 (t)=2 F
t

0
D (0)

x (s) ds,

mQNA
0, 2 (t)=2 F

t

0
D (0)

y (s) ds,

mQNA
4, 0 (t)=24 F

t

0
F

s

0
D (0)

x (s − sŒ) D (0)
x (sŒ) dsŒ ds − 12 1F

t

0
D (0)

x (s) ds2
2

,

mQNA
0, 4 (t)=24 F

t

0
F

s

0
D (0)

y (s − sŒ) D (0)
y (sŒ) dsŒ ds − 12 1F

t

0
D (0)

y (s) ds2
2

.

(25)

The equation in (25) for the mean-square displacement mQNA
2, 0 (t) of the

tracer across the shear is exact. However, looking back at the exact for-
mulas in (19) and (20), we see that the other predictions would only
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generally be correct for the trivial model in which both the sweeping and
shearing components of the flow are white noise processes.

The most serious drawback of the QNA exhibited here is its complete
failure to represent any effects of the randomly fluctuating cross sweep w(t)
on the transport along the shear; the components X(t) and Y(t) of the
trajectory are predicted to be independent of each other. In particular, the
mean-square displacement mQNA

0, 2 (t) of the tracer along the shear completely
misses the important factor e−1

2 k2
m2, 0(s) (see Eq. (19)) which represents the

inhibition of the transport along the shear due to the tracer being randomly
swept across streamlines. Furthermore, the QNA wrongly predicts the
higher order statistics of the displacement X(t) along the sweeping direc-
tion to be non-Gaussian.

Special Exact Solution. We note further that an explicit formula
for the QNA prediction of the physical-space Green’s function, Gx, QNA(x, t)=
>R GQNA(x, y, t) dy, describing the PDF for X(t) can be obtained by inver-
sion of this Laplace transform for the special case in which the random
sweeping field w(t) is steady, i.e., a random time-independent constant wg.
The power spectrum and correlation function of w(t) may then be written
as

Rw(t) — s2
wg

, (26)

where swg
is the standard deviation of the mean-zero Gaussian random

distribution for the constant value of wg. Noting that R̃w(z)=s2
wg

z−1 and
that Gx, QNA(x, t) is the inverse Fourier–Laplace transform of G̃QNA(k,
p=0, z), we find the following explicit QNA prediction (21) for the steady
random sweep model:

GQNA(x, t)=1
2 (d(x − swg

t)+d(x+swg
t)), (27)

which is just the Green’s function for a random steady sweep model with a
probability density for the steady random sweep wg given by

p(w)=1
2 (d(w − swg

)+d(w+swg
)).

This shows that the QNA predictions for the statistics of X(t) are realizable
for the case of a steady random sweep, in the sense that the predictions are
consistent with a well-defined probabilistic model for the velocity field
(though it differs from the Gaussian statistics assumed in the Shear Flow
with Cross Sweep model). We are not aware of any statistical models
underlying the QNA predictions for the general case of a random sweep
w(t) which fluctuates in time.
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QNA with Molecular Diffusion. The QNA equation, generalized to
include the possibility of molecular diffusion, reads:

“ĜQNA

“t
=−o(k2+p2) ĜQNA(k, p, t)

−k2 F
t

0
e−o(k2+p2) sRw(s) ĜQNA(k, p, t − s) ds

−p2 F
t

0

1F
R

E(q, s) e−o((k − q)2+p2) s dq2 ĜQNA(k, p, t − s) ds, (28)

The solution may be represented via a Laplace transform as

G̃QNA(k, p, z)=[z+k2ÃQNA(k, p, z)+p2B̃QNA(k, p, z)]−1,

where

˛ ÃQNA(k, p, z)=o+R̃w(z+o(k2+p2)),

B̃QNA(k, p, z)=o+F
R

Ẽ(q, z+o[(k − q)2+p2]) dq.

Some important cumulants are:

˛
mQNA

2, 0 (t)=2ot+2 F
t

0
D (0)

x (s) ds,

mQNA
0, 2 (t)=2ot+2 F

t

0
D (o)

y (s) ds,

mQNA
4, 0 (t)=24 F

t

0
F

s

0
D (0)

x (s − sŒ) D (0)
x (sŒ) dsŒ ds − 12 1F

t

0
D (0)

x (s) ds2
2

,

mQNA
0, 4 (t)=24 F

t

0
F

s

0
D (o)

y (s − sŒ) D (o)
y (sŒ) dsŒ ds − 12 1F

t

0
D (o)

y (s) ds2
2

.

(29)

We note that the QNA formulas undergo an additional nontrivial
transformation beyond that prescribed by the exact transformation laws
(21) under the addition of molecular diffusivity. The further change causes
the tracer motion along the shearing direction to feel the inhibiting effects
due to molecular diffusion acting across the streamlines (through the factor
e−o(k − q)2 s multiplying E(q, s) in (28)), whereas the the tracer motion along
the shearing direction feels no effects of the random sweep w(t) across
the streamlines. In particular, the QNA formulas are more accurate when
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molecular diffusion is treated in the advection-diffusion equation through
a deterministic operator oD instead of through a random advection term
`2o ux(t) “/“x+`2o uy(t) “/“y with ux(t) and uy(t) each independent
white noise, whereas either of these approaches should produce equivalent
results for the Green’s function under an exact treatment. For example, the
formula in (29) for the mean-square tracer displacement mQNA

0, 2 (t) differs
from the exact result in (19) only by missing the factor e−k2 >t

0 (t − s) Rw(s) ds

representing the influence of the random cross sweep. The reason for the
different treatment of a rapidly decorrelating cross sweep w(t) and molecu-
lar diffusion can be traced to the fact that molecular diffusion will enter the
‘‘bare’’ operator H0(t | tŒ) appearing in the QNA formula (158) in Appen-
dix A, whereas a randomly fluctuating cross sweep does not.

We therefore conclude that the QNA will automatically be a poor
approximation whenever the random cross sweep w(t) plays an important
role in influencing the shear-parallel transport. But when w(t) is either
absent or negligible relative to other cross-shear transport processes (see
Section 4), the QNA may be viable. While the formulas for the higher
order cumulants along the shear, mQNA

0, 2n (t), are not exact for n \ 2 even
when w(t)=0, it is not clear by simple inspection how far they deviate
from the exact results. We will therefore focus our asymptotic studies in
Sections 4 and 5 on how well the QNA performs for the case where w(t) is
negligible.

3.2. The Quasilinear Approximation (QLA)

The QLA was introduced about at the same time as the QNA, and
may be viewed as its convolution-free analogue. (67–69) Both equations are
obtained at the same order of truncation of two exact (but formal) series
representations for the kernel appearing in the equation for the Green’s
function (see Appendix A). The QLA leads to the following equation when
o=0:

“ĜQLA

“t
=−(k2D (0)

x (t)+p2D (0)
y (t)) ĜQLA, (30)

with ĜQLA |t=0=1 and again >R E(q, t) dq=Rv(0, t) has been used. The
QLA equation takes the form of a linear diffusion equation with time-
dependent diffusivities D (0)

x (t) and D (0)
y (t) in the x and y directions, and

involves no convolutions. The solution of Eq. (30) is

ĜQLA(k, p, t)=e−k2 >t
0 D(0)

x (s) ds − p2 >t
0 D(0)

y (s) ds. (31)
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Hence, according to the QLA, there are only two non-zero cumulants

˛mQLA
2, 0 (t)=2 F

t

0
D (0)

x (s) ds,

mQLA
0, 2 (t)=2 F

t

0
D (0)

y (s) ds.
(32)

The QLA therefore is exact insofar as the sweeping motion X(t) of the
tracer is concerned (which is an improvement over the QNA), but com-
pletely misses the effects of the sweeping on the tracer displacement Y(t)
along the shear in the same way that the QNA does. Therefore the QLA is
exact precisely when there is no sweeping or the shear flow is either spa-
tially uniform or a white noise process in time so that the sweeping would
have no influence on the transport along the shear. Put differently, for any
SFCS model flow, the QLA predicts statistics of the tracer as if the flow
were spatially uniform with the same Gaussian temporal statistics as the
actual flow, i.e.,

vQLA(x, y, t)=1 w(t)
v(0, t)

2 . (33)

Thus, the QLA is a relevant approximation if the time-decorrelation asso-
ciated with the shearing component of the flow is so strong that the sweep-
ing effects can be neglected. Moreover, the QLA will always produce
realizable predictions, in the sense that they are consistent with some well-
defined underlying probabilistic model for the velocity field (33) (though it
differs from the exact statistics of the SFCS model).

QLA with Molecular Diffusion. Generalized to include the effect of
molecular diffusion, the QLA equation becomes:

“ĜQLA

“t
=−(k2(o+D (0)

x (t))+p2(o+D (o)
y (k, t))) ĜQLA, (34)

where

D (o)
y (t)=F

t

0
F

R
E(q, s) e−o(q2 − 2kq) s dq ds. (35)
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Its solution is:

ĜQLA(k, p, t)=e−k2(ot+>t
0 D(0)

x (s) ds) − p2(ot+>t
0 D(o)

y (s) ds), (36)

and the only nontrivial cumulants involving the statistics of X(t) and Y(t)
separately are:

˛mQLA
2, 0 (t)=2ot+2 F

t

0
D (0)

x (s) ds,

mQLA
0, 2 (t)=2ot+2 F

t

0
D (o)

y (s) ds.
(37)

Therefore, X(t) and Y(t) are each Gaussian random processes, but their
joint statistics are predicted to be non-Gaussian because mixed cumulants
such as

mQLA
2m, 2(t)=2(−)m F

t

0
(t − s)(2os)2m F

R
q2mE(q, s) e−oq2s dq ds

are nonzero when o ] 0.
Like the QNA, the QLA undergoes a further nontrivial transformation

beyond that prescribed for the exact statistics (21) under the addition of
molecular diffusion. Molecular diffusion is also handled much more accura-
tely in the QLA when represented by the deterministic operator oD than
with a white noise advection operator `2o ux(t) “/“x+`2o uy(t) “/“y.
Indeed, the full statistics of X(t) as well as all the cumulants ma, 2(t) are
correctly predicted by the QLA whenever w(t)=0. Cumulants ma, b(t) with
b \ 4 however are not exactly predicted by the QLA except for the trivial
case that the shear flow has no spatial variation or is white noise in time.
The extent to which the QLA prediction that mQLA

0, 4 (t)=0 departs from the
exact result when w(t)=0 will be examined through large-scale, long-time
asymptotics in Sections 4 and 5.

3.3. The Direct Interaction Approximation (DIA)

The DIA was introduced by Kraichnan (32–34) to remedy some defects
of the QNA in the context of hydrodynamic turbulence, and was applied to
passive scalar advection by Roberts. (63) Roughly speaking, the DIA belongs
to the same class of approximations as the QNA but it involves a further
resummation before truncation of the series expansion for the kernel
appearing in the equation for the Green’s function (see Appendix A). The
DIA leads to the following equation when o=0:
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“ĜDIA

“t
= − k2 F

t

0
Rw(t − s) ĜDIA(k, p, t − s) ĜDIA(k, p, s) ds

− p2 F
t

0

1F
R

E(q, t − s) ĜDIA(k − q, p, t − s) dq2 ĜDIA(k, p, s) ds,
(38)

with ĜDIA |t=0=1. This equation involves a convolution of the approximate
Green’s function with itself and the energy spectrum. Even for our simple
model, the analytical solution of Eq. (38) for general E(k, t) is not avail-
able. We simply note that the formal solution of Eq. (38) may be written in
the Laplace representation as

G̃DIA(k, p, z)=[z+k2ÃDIA(k, p, z)+p2B̃DIA(k, p, z)]−1, (39)

where the new functions ÃDIA(k, p, z) and B̃DIA(k, p, z) satisfy the following
equations equivalent to Eq. (38):

˛ ÃDIA(k, p, z)=
1

2pi
F
C

R̃w(z −) Ĝ̃ (k, p, z − z −) dz −,

B̃DIA(k, p, z)=
1

2pi
F

R
F
C

Ẽ(q, z −) Ĝ̃ (k − q, p, z − z −) dz − dq.
(40)

The integrals over the variable z − are to be taken along a Bromwich
contour C in the complex plane which lies parallel to the imaginary axis
and intersects the real axis at any point between 0 and Re z.

The evaluation of the DIA predictions for even the simplest cumulants
appears to be rather complicated due to the nonlinear implicit relationship
in (39) and (40) for the DIA Green’s function. The Laplace transform of
the cumulants of the sweeping component X(t) of the tracer motion can be
obtained recursively, and lead to the following DIA predictions in the time
representation:

˛mDIA
2, 0 (t)=2 F

t

0
D (0)

x (s) ds,

mDIA
4, 0 (t)=24 F

t

0
F

s

0
[D(0)

x (s − sŒ) D (0)
x (sŒ) − D (0)

x (s) D (0)
x (sŒ)

+(t − s) Rw(s) D (0)
x (sŒ)] dsŒ ds.

(41)

We are unaware of how to formulate a closed expression for the DIA
predictions of cumulants mDIA

a, b (t) with b \ 2. For example, the formal
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expression obtained for the Laplace transform of the mean-square displa-
cement along the shear flow from differentiation of Eq. (39) is:

m̃DIA
0, 2 (z)=

1
ipz2 F

R
F
C

Ẽ(q, z −)
z − z −+q2ÃDIA(−q, 0, z − z −)

dz − dq. (42)

This expression is not closed since it involves ÃDIA(−q, 0, z − z −) which,
from (40), is the solution to the nonlinear integral relation:

ÃDIA(k, 0, z)=
1

2pi
F
C

R̃w(z −)
z − z −+k2ÃDIA(k, 0, z − z −)

dz −. (43)

The only case for which we know how to solve this equation are the
extreme cases in which the random cross sweep w(t) is either white noise
or a steady random constant. The case of white noise sweeping is, as we
shall see and discuss below, equivalent under the the DIA to the action
of molecular diffusion. In the case of a steady random constant w(t)=wg,
with energy spectrum and correlation function given by Eq. (26), we have
R̃w(z)=s2

wg
z−1 so that ÃDIA(k, p, z)=s2

wg
G̃DIA(k, p, z) and Eq. (39) becomes

a pointwise quadratic equation for G̃x, DIA(k, z)=G̃DIA(k, p=0, z). Upon
taking an inverse Fourier–Laplace transform on the resulting solution, we
find (21, 34)

Gx, DIA(x, t)=(pswg
t)−1

`(1 − (x/2swg
t)2)+,

where (f )+ — max(f, 0). This solution is the Green’s function for a steady
random sweep model with probability distribution for wg given by a semi-
circle distribution

pDIA
wg

(w)=(pswg
)−1

`(1 − (w/2swg
)2)+.

Therefore, the DIA prediction for the statistics for X(t) is realizable for
a steady random sweep model. However, we will provide in Section 5.1 a
class of fluctuating random sweep models for which the DIA may be
shown explicitly to be unrealizable. We do not dwell further on the steady
random constant case in this paper because its lack of ergodicity produces
statistical artifacts (though it is of some interest as an extreme limiting case
of a slowly decorrelating random sweep).

One main disadvantage of the DIA which has already become evident
is that even when applied to simple models such as those considered in this
paper, the equations can be difficult to solve. Indeed, it is not difficult to
compute m0, 2(t) exactly in the present model, whereas the DIA prediction
for this quantity requires the solution of the nonlinear integral equation
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(43). On the other hand, the DIA does improve upon the simpler QNA in
that the random cross sweep w(t) does influence the shear-parallel trans-
port under the DIA. The precise relationship predicted by the DIA is diffi-
cult to resolve, though we will see in Section 4 that correct scaling rela-
tionships between space and time variables are predicted at large scales and
long times. Moreover, if the random sweep is white noise, the exact
formula for m0, 2(t) (but not higher order cumulants) is recovered. Provided
the characteristic time-scale ya associated with w(t) is small enough, then,
the DIA gives an approximation for the second moment of y(t) which is
qualitatively valid for times large compared with ya. In particular, assum-
ing that

lim
k Q 0

z Q 0+
ÃDIA(k, 0, z)=F

.

0
Rw(s) ds exists and is nonzero, (44)

the expression for the physical time representation of Eq. (42) may be
estimated asymptotically as

mDIA
0, 2 (t) ’ 2 F

t

0
(t − s) F

R
E(q, s) e−q2t >.

0 Rw(sŒ) dsŒ dq ds, as t Q ., (45)

which can be compared with the exact result in (19). In other respects it is
not clear how significantly the DIA improves upon the QNA. For example,
both of these closure approximations correctly reproduce m2, 0(t), whereas
both wrongly predict (different) nonzero values for m4, 0(t) corresponding
to spurious non-Gaussian corrections to the statistics of X(t). Like the
QNA equation (23), the full DIA equation (38) is exact only in the trivial
case that both the sweeping components and shearing components of the
flow are white-noise processes in time.

DIA with Molecular Diffusion. The DIA equation, generalized to
include the possibility of molecular diffusion, reads:

“ĜDIA

“t
=−o(k2+p2) ĜDIA

−k2 F
t

0
Rw(s) ĜDIA(k, p, s) ĜDIA(k, p, t − s) ds

−p2 F
t

0

1F
R

E(q, s) ĜDIA(k − q, p, t − s) dq2 ĜDIA(k, p, t − s) ds.
(46)
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In Laplace representation, this equation reads

G̃DIA(k, p, z)=[z+k2ÃDIA(k, p, z)+p2B̃DIA(k, p, z)]−1, (47)

where

˛ ÃDIA(k, p, z)=o+
1

2pi
F
C

R̃w(z −) G̃DIA(k, p, z − z −) dz −,

B̃DIA(k, p, z)=o+
1

2pi
F

R
F
C

Ẽ(q, z −) G̃DIA(k − q, p, z − z −) dz − dq.
(48)

Since G̃DIA(k, p=0, z − ok2) is independent of o, it follows that the
cumulants ma, 0(t) for X(t) are identical to their o=0 values in (41) except
that:

mDIA
2, 0 (t)=2ot+2 F

t

0
D (0)

x (s) ds. (49)

We do not know how to evaluate the cumulants mDIA
a, b (t) for b=2 in a

general closed form, but it will suffice for our investigations to present the
following formulas valid when w(t)=0:

˛
mDIA

0, 2 (t)=2ot+2 F
t

0
D (o)

y (s) ds,

mDIA
0, 4 (t)=24 F

t

0
F

s

0
D (o)

y (s − sŒ) D (o)
y (sŒ) dsŒ ds − 12 1F

t

0
D (o)

y (s) ds2
2

+24 F
t

0
F

s

0
(t − s)(s − sŒ)

× F
R

2
E(q, s) E(qŒ, sŒ) e−oq2s − o(qŒ2+2qqŒ) sŒ dqŒ dq dsŒ ds.

(50)

The DIA formulas obey the exact transformation law (21) under the addi-
tion of molecular diffusion. While the DIA improves upon the QNA in
taking the effects of w(t) into account on the shear-parallel transport, the
comparison of these approximations for the case w(t) — 0 (but o > 0) is less
obvious. Their predictions for m0, 2(t) agree and are correct, but their pre-
dictions for m0, 4(t) differ. In Section 5, we will examine the accuracy of
these approximations for m0, 4(t) at long times in a steady shear with o > 0,
and find that there are situations in which the DIA prediction is worse even
though the method is more sophisticated.
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3.4. The Modified Direct Interaction Approximation (MDIA)

The MDIA was introduced in ref. 71. It belongs to the same class of
approximation as the QLA, but involves a further resummation before
truncation of the formal series expansion for the kernel in the equation for
the Green’s function. In this respect, the MDIA is to the QLA what the
DIA is to the QNA. See Appendix A.4 later for a derivation. The MDIA
leads to the following equation for o=0:

“ĜMDIA

“t
=−(k2D (0)

x (t)+p2D (0)
y, MDIA(k, p, t)) ĜMDIA, (51)

where ĜMDIA |t=0=1 and

D (0)
y, MDIA(k, p, t)=F

t

0
F

R
E(q, s)

ĜMDIA(k − q, p, s)
ĜMDIA(k, p, s)

dq ds. (52)

The MDIA equation for our SFCS model does not involve any time
convolutions, but is not a simple diffusion equation because D (0)

y, MDIA

depends on the wavenumbers (k, p), and is nonlinear because this coeffi-
cient depends on the solution ĜMDIA. Equation (51) is equivalent to the
following equation for the cumulant generating function r=ln ĜMDIA:

“
2rMDIA

“t2 =−k2Rw(t) − p2 F
R

E(q, t) erMDIA(k − q, p, t) − rMDIA(k, p, t) dq, (53)

with the initial condition rMDIA |t=0=“rMDIA/“t|t=0=0. This equation is
easily solved when p=0:

rMDIA(k, p=0, t)=− 1
2 k2m2, 0(t), (54)

which implies that X(t) is predicted to be a Gaussian random process with
mean zero and the exact variance:

mMDIA
2, 0 (t)=2 F

t

0
D (0)

x (s) ds.

The full analytical solution of Eq. (51) [or Eq. (53)] is not available,
but equations for the cumulants of {X(t), Y(t)} can be derived from
Eq. (53). The procedure used hereafter could in principle be applied for
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obtaining equations for mMDIA
a, b (t) for all {a, b} ¥ N2. However, the proce-

dure becomes rapidly very cumbersome for the higher moments in the
y-direction, and we shall only give the equations for mMDIA

2m, 2 (t) for all m ¥ N
and for mMDIA

0, 4 (t).
Consider first mMDIA

0, 2 (t). Using Eqs. (53) and (54), it follows that this
quantity satisfies the following second order ordinary differential equation

d2

dt2 mMDIA
0, 2 (t)=2 F

R
E(q, t) e−1

2 q2m2, 0(t) dq, (55)

with the initial condition mMDIA
0, 2 |t=0=dmMDIA

0, 2 /dt|t=0=0. Note that the
exact formula m0, 2(t) from Eq. (19) exactly satisfies Eq. (55) with the same
initial conditions, so that mMDIA

0, 2 (t)=m0, 2(t).
Consider next m2m, 2(t). Using Eq. (53) and Eq. (54), we obtain:

d2

dt2 mMDIA
2m, 2 (t)=2(−)m m2m

2, 0(t) F
R

q2mE(q, t) e−1
2 q2m2, 0(t) dq, (56)

for the initial condition mMDIA
2m, 2 |t=0=dmMDIA

2m, 2 /dt|t=0=0. The solution of this
equation is

mMDIA
2m, 2 (t)=2(−)m F

t

0
(t − s) m2m

2, 0(s) F
R

q2mE(q, s) e−1
2 q2m2, 0(s) dq ds. (57)

Finally, consider mMDIA
0, 4 (t). Using Eq. (53), we obtain

d2

dt2 mMDIA
0, 4 (t)=−12 F

R
E(q, t) e−1

2 q2m2, 0(t)[m0, 2(t)+r(−q, t)] dq, (58)

where mMDIA
0, 4 |t=0=dmMDIA

0, 4 /dt|t=0=0 and we have defined

r(k, t)=5 “
2

“p2 r(k, p, t)6
p=0

. (59)

Since it follows from Eq. (53) that r(k, t) satisfies

“
2r(k, t)

“t2 =−2 F
R

E(q, t) e−1
2 (q2 − 2kq) m2, 0(t) dq, (60)
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for the initial condition r|t=0=“r/“t|t=0=0, we may combine Eqs. (55),
(58), (60) to obtain

d2

dt2 mMDIA
0, 4 (t)=24 F

t

0
(t − s) F

R
2

E(q, t) E(qŒ, s)

× e−1
2 q2m2, 0(t) − 1

2 qŒ2m2, 0(s)(e−qqŒm2, 0(s) − 1) dqŒ dq ds. (61)

Integrating by quadrature, we obtain

mMDIA
0, 4 (t)=24 F

t

0
(t − s) F

s

0
(s − sŒ) F

R
2

E(q, s) E(qŒ, sŒ)

× e−1
2 q2m2, 0(s) − 1

2 qŒ2m2, 0(sŒ)(e−qqŒm2, 0(sŒ) − 1) dqŒ dq dsŒ ds. (62)

This expression is exact if the shearing component of the flow is a white-
noise. The validity of Eq. (62) will be further discussed below.

As mentioned above, the MDIA prediction for the statistics of X(t) is
exact, but the full statistics for Y(t) are correctly predicted only for the
trivial cases in which the shear flow is spatially uniform or a white noise
noise process in time or when there is no sweeping at all. However, the
mean-square displacement along the shear m0, 2(t) is correctly predicted in
general, and the cumulants ma, 2(t) are correctly predicted whenever the
random cross sweep w(t) is a white noise process, whatever the statistics of
the shear flow v(x, t). In one sense, then, the MDIA performs the best of
any closure approximation on the SFCS model because it recovers the
exact results under more general conditions than any of the other closure
approximations. The MDIA improves upon the QLA in the same way the
DIA improves upon the QNA in taking into account the effect of the
random cross sweep w(t) on the motion of the tracer along the shear Y(t)
in a way which is exact to second order. We examine the MDIA predic-
tions involving the higher order statistics of Y(t) through large-scale, long-
time asymptotic studies in Sections 4 and 5.

MDIA with Molecular Diffusion. Generalized to include the pos-
sibility of molecular diffusion, the MDIA equation becomes:

“ĜMDIA

“t
=−(k2(o+D (0)

x (t)+p2(o+D (0)
y (k, p, t))) ĜMDIA, (63)

It is readily verified from this equation that ĜMDIA(k, p, t) transforms under
the addition of molecular diffusion through the exact transformation
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formula (21) so the formulas for the cumulants can be deduced from those
developed for the case o=0:

˛
mMDIA

2, 0 (t)=m2, 0(t)=2ot+2 F
t

0
D (0)

x (s) ds,

mMDIA
a, 0 (t)=0 for a \ 3,

mMDIA
0, 2 (t)=2ot+2 F

t

0
F

R
(t − s) E(q, s) e−1

2 q2m2, 0(s) dq ds,

mMDIA
2m, 2 (t)=2(−)m F

t

0
(t − s) m2m

2, 0(s) F
R

q2mE(q, s) e−1
2 q2m2, 0(s) dq ds,

mMDIA
0, 4 (t)=24 F

t

0
(t − s) F

s

0
(s − sŒ) F

R
2

E(q, s) E(qŒ, sŒ)

× e−1
2 q2m2, 0(s) − 1

2 qŒ2m2, 0(sŒ)(e−qqŒm2, 0(sŒ) − 1) dq dqŒ dsŒ ds.

(64)

Because the MDIA statistics obey the exact transformation law (21), these
formulas are exact under the same conditions as those discussed above for
o=0. We will examine the accuracy of the MDIA prediction for mMDIA

0, 4 (t)
for some special submodels in Section 5.

3.5. The Renormalized Lagrangian Approximation (RLA)

The final closure approximation which we consider is derived within
the same framework as the other closure approximations previously dis-
cussed (see Appendix A for a derivation). This Renormalized Lagrangian
Approximation (RLA) bears its name from the fact that its governing
equations can also be derived by expressing the effective diffusivity of the
passive scalar field in terms of the Lagrangian velocity correlation function,
and then computing this function by invoking the Corrsin assumption (13)

that the cumulative tracer displacement and the velocity field are statisti-
cally independent (47, 64)). The RLA can also be viewed as a simplified varia-
tion of the abridged version of the Lagrangian History DIA (ALHDIA)
which was introduced by Kraichnan (36) to remedy the inability of the DIA
to predict the Kolmogorov − 5/3 exponent for the energy spectrum in high
Reynolds number Navier–Stokes turbulence. (35) A version of the ALHDIA
especially designed for the passive scalar problem was later proposed in
ref. 39. The RLA has much the same structure as the ALHDIA equation in
ref. 39 but is less complicated and easier to derive, especially for time-
dependent velocity fields. Note that the RLA we use is distinct from the
‘‘Lagrangian Renormalized Approximation’’ (LRA) developed by Kaneda
and others, which is another version of the ALHDIA. (23, 24, 29) We are not
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aware of how to apply the LRA to passive scalar problems with prescribed
velocity statistics.

The RLA leads to the following equation when o=0:

“ĜRLA

“t
=−(k2D (0)

x (t)+p2D (0)
y, RLA(t)) ĜRLA, (65)

where ĜRLA |t=0=1 and

D (0)
y, RLA(t)=F

t

0
F

R
E(q, s) ĜRLA(−q, 0, s) dq ds. (66)

The form of the RLA equation for the SFCS model is, in a way, of inter-
mediate complexity between that of the QLA and the MDIA. Like the
QLA, the RLA takes the form of a diffusion equation with time-dependent
diffusivities D (0)

x (t) and D (0)
y, RLA(t). However, the RLA equation is non-

linear, since the coefficient D (0)
y, RLA(t) depends on the solution ĜRLA, though

in a simpler way than in the MDIA (see Eq. (52)).
The solution of Eq. (65) is

ĜRLA(k, p, t)=e−1
2 k2

m2, 0(t) − 1
2 p2

m0, 2(t), (67)

where m2, 0(t) and m0, 2(t) take their exact values

˛mRLA
2, 0 (t)=2 F

t

0
D (0)

x (s) ds, m2, 0(t)=2 F
t

0
(t − s) Rw(s) ds,

mRLA
0, 2 (t)=2 F

t

0
(t − s) F

R
E(q, s) e−1

2 q2m2, 0(s) dq ds.
(68)

All other cumulants are predicted to vanish by the RLA because the
Green’s function (67) is Gaussian. But this Gaussianity only holds for
trivial cases in which the shear flow is spatially uniform or white noise
in time or when there is no cross sweep w(t)=0. The X(t) statistics are
always correctly predicted by the RLA.

RLA with Molecular Diffusion. The RLA can be generalized to
include molecular diffusion as explained in Appendix A, and it is readily
checked that the statistics transform according to the exact relationship
(21):

“ĜRLA

“t
=−(k2(o+D (0)

x (t))+p2(o+D (0)
y, RLA(t))) ĜRLA, (69)
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The exact solution is

ĜRLA(k, p, t)=e−1
2 k2

m2, 0(t) − 1
2 p2

m0, 2(t),

where the following cumulants predicted by the RLA agree with their exact
values:

˛mRLA
2, 0 (t)=m2, 0(t)=2ot+2 F

t

0
D (0)

x (s) ds,

mRLA
0, 2 (t)=m0, 2(t)=2ot+2 F

t

0
(t − s) F

R
E(q, s) e−1

2 q2m2, 0(s) dq ds.

All other cumulants are predicted by the RLA to vanish. The RLA is exact
whenever w(t)=0 or if the shear flow is spatially uniform or white noise in
time.

4. RENORMALIZED CLOSURE EQUATIONS FOR LARGE-SCALE,

LONG-TIME BEHAVIOR OF GREEN’S FUNCTIONS

In applications, one is often most interested in the effective transport
of a passive scalar field over large scales and long times. The small-scale,
finite time evolution of the passive scalar field will depend of course on a
variety of particulars of the geometry and statistics of the flow field. One
can hope, however, that from a coarse-grained point of view, the passive
scalar dynamics can be described by effective equations which depend on
the flow field only through a small set of parameters. The simplest instance
of this is when the velocity field has sufficiently short-range correlations in
space and/or time so that homogenization theory applies, (3, 19, 50, 52, 56, 59) and
the Green’s function for the tracer displacement can be shown rigorously to
be well described by an ordinary diffusion equation at large scales and long
times. The effects of the turbulent flow on large scales and long times
is in this case completely described by its mean component and by some
effective diffusivity tensor. Homogenization theory fails in the presence
of strong long-range correlations in space and time, and in particular is
inapplicable to fully developed turbulence. Nonetheless, one can hope that
large scales and long times, some sort of practical effective equation might
be derived which depends on only a few bulk or integrated properties of
the velocity field.

We therefore will consider how the equations for the Green’s function
furnished by the various closure approximations behave when rescaled to
large scales and long times. (4) We shall introduce rescaling factors a, l, r,
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and A, which will be linked together in some way to be specified, so that we
can generically consider a, l, and A each as a function of r. Then working
with a Fourier representation in space, we consider the evolution equation
obeyed by the rescaled approximate Green’s function:

Ĝ (r)
app(k, p, t) — A(r) Ĝapp(ka(r), pl(r), t/r2),

which corresponds to the physical-space rescaling:

G (r)
app(x, y, t)=A(r)(a(r))−1 (l(r))−1 Gapp(x/a(r), y/l(r), t/r2).

We choose the relationships between the scaling factors so that Ĝ (r)
app(k, p, t)

converges to a finite limit as r Q 0, corresponding to a large-scale, long-
time limit:

Ĝ̄app(k, p, t) — lim
r Q 0

Ĝ (r)
app(k, p, t).

We call this limiting Green’s function the renormalized Green’s function
(refs. 2 and 5); it plays the role of a ‘‘fixed point’’ in renormalization group
terminology. The rescaling factors indicate how we must link the coarse-
graining in space and time to follow the nontrivial development of the
dynamics. We can immediately see, by noting that Ĝapp(0, 0, 1) — 1, that the
amplitude rescaling must always be trivial:

A=1,

so the general rescaling procedure can be simplified to:

Ĝ (r)
app(k, p, t) — Ĝapp(ka(r), pl(r), t/r2). (70)

If homogenization theory prevails and the passive scalar Green’s function
spreads diffusively in both x and y directions, then the corresponding
‘‘standard’’ scalings are:

r=a=l.

The passive scalar spreads superdiffusively across the shear when r

vanishes more slowly than a, and superdiffusively along the shear when r

vanishes more slowly than l. Large scales should quite generally be asso-
ciated with long times, and therefore we will generally assume that a and
l both vanish with r. An exceptional situation arises, however, when the
motion is trapped along a certain direction, as we will discuss in
Paragraph 4.2.1 later.
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Another reason to consider the renormalized equations for the Green’s
functions produced by the closure approximations is that they may be
compared against explicit and rigorous results (refs. 2 and 5). Indeed,
Avellaneda and Majda (4) already carried out this program for the DIA and
QNA equations for a shear flow model with molecular diffusion (o > 0) but
no cross sweep (w(t) — 0) where the Eulerian and Lagrnagian velocity cor-
relations coincide. Here we will extend their approach to embrace all
closure approximations considered in the present paper, as well as the pos-
sibility of a cross sweep which creates differences between the Eulerian and
Lagrangian velocity correlations.

For the purpose of more detailed quantitative assessments of the
closure approximations, particularly at large scales and long times, we
introduce in Section 4.1 the Infrared Scaling Shear Flow with Cross Sweep
(IS-SFCS) model in which we provide a concrete specification for the
spatio-temporal statistical structure of the fluctuating cross sweep w(t) and
the shear flow v(x, t). This model involves parameters describing the large-
scale, long-time statistical properties of the velocity field, which play a
primary role in determining the evolution of passive scalar field at large
scales and long times. Different choices of these parameters allow us to
consider the approximations in regimes with qualitatively different kinds of
physical features. The main conclusions that we draw from this analysis are
as follows:

1. The MDIA is again superior to the other closure approximations
in predicting the large-scale, long-time properties for the Green’s function
in the IS-SFCS model in that it correctly predicts the renormalized Green’s
function under a broader set of parameters than any other closure approx-
imation. Moreover, the MDIA correctly predicts whether the full statistics
of the tracer displacement in the IS-SFCS model should become asymptoti-
cally Gaussian or not. No other closure approximation enjoys this property.

2. The inability of the QNA and QLA to resolve the influence of the
cross sweep w(t) on the statistics of the shear-parallel motion Y(t) will
cause serious errors in their prediction of the large-scale, long-time proper-
ties of the Green’s function whenever the random cross sweep is the domi-
nant cross-shear transport mechanism. With this exception, all closure
approximations otherwise correctly predict when the large-scale, long-time
statistics of the passive scalar field can be described by a simple (homog-
enized) effective diffusion equation. The effective diffusion coefficient for
the shear-parallel motion Y(t) is however incorrectly predicted by the QNA
and DIA when a cross sweep w(t) is present.

3. The DIA predicts the correct space-time scaling exponents in
most, but not all cases. However, the DIA makes unrealizable predictions
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violating moment inequalities for the simple sweeping motion (along x) of
the tracer for certain kinds of correlation functions.

4. The RLA always predicts the correct space-time scaling exponents.
Since it always predicts a Gaussian form for the Green’s functions, it
misses the persistent non-Gaussianity that emerges in certain regimes.

5. The large-scale, long-time predictions of the closure approxima-
tions differ most strongly from each other when the tracer motion is either
subdiffusive or superdiffusive. In these situations, the MDIA emerges as
the clearly superior closure approximation. It is interesting to note that the
renormalized equations predicted by the QNA and DIA can in fact be
considerably more complicated than the true renormalized equation.

4.1. Definition of Infrared Scaling Shear Flow with Cross Sweep

Model

We now specify the large-scale spatio-temporal structure of the veloc-
ity fields in terms of spatial wavenumbers k and temporal frequencies w.
We therefore introduce the Fourier transforms of the velocity correlation
functions:

˛Rw(t)=F
R

e iwtEw(w) dw,

Rv(x, t)=F
R

2
e i(kx+wt)Ê(k, w) dk dw.

(71)

The function Ew(w), which we shall call the power spectrum of the fluctuat-
ing cross sweep, is a nonnegative even function which resolves the energy of
w(t) with respect to frequency, ref. 73, Section 9. The function Ê(k, w),
which we call the spatio-temporal energy spectrum of the shear flow, is
similarly a nonnegative even function (in both k and w separately) repre-
senting the density of the distribution of energy in the shear flow amongst
its wavenumber and frequency modes. The spatio-temporal energy spec-
trum is related to the spectral temporal correlation function defined in (6)
by a Fourier transform:

E(k, t)=F
R

e iwtÊ(k, w) dw,

and this relation can be used to represent the formulas for the tracer statis-
tics in terms of Ê(k, w), as was done in ref. 49, Section 3.3. We note that
Ew(w) and Ê(k, w) can be an arbitrary non-negative function whereas the
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constraints on the possible forms of Rw(t) and E(k, t) (or Rv(x,)) are not
so simply expressed, ref. 73, Sections 4 and 9. This is the main reason we
use the former to define our IS-SFCS model.

Sweeping Component. The power spectrum of the cross sweep is
taken to be a function with power-law scaling at low frequency:

Ew(w)=AE, w |w|−b kw(|w|). (72)

The function kw is a smooth, dimensionless, rapidly decaying function on
the positive real axis with kw(w)=1+Chwh+o(wh) as w Q 0 for some
finite constants Ch and h > 0. The factor AE, w is just a constant with
appropriate dimensions setting the amplitude of the sweeping component.

The exponent b in (72) describes how strongly the energy of the fluc-
tuating cross sweep is concentrated at low frequency; we shall therefore
refer to it as an infrared scaling exponent, and we demand b < 1 so that the
total energy is finite. Larger values of b correspond to stronger long-range
temporal correlations of w(t). This is reflected also in the long-time scaling
property implied by Eq. (72) (see Section 4.2.1)

F
t

0
Rw(s) ds=O(tb+1) for − 1 < b < 1.

Shearing Component. The spatio-temporal properties of the shear
flow in the IS-SFCS model will be completely described by the energy
density residing in each wavenumber,

Ē(k)=F
R

Ê(k, w) dw=
1

2p
F

R
Rv(x, 0) e−ikx dx (73)

and a single Eulerian correlation time scale y(k) associated to each wave-
number through the following general form:

Ê(k, w)=Ē(k) f̂(wy(k)) y(k). (74)

The function f̂ will be assumed to be a smooth, even, rapidly decaying,
dimensionless function on the real axis with >R f̂(x) dx=1 which describes
the common shape of the temporal structure of each spatial Fourier mode
of the shear velocity field. The energy spectrum Ē(k), which sets the
amplitude of the fluctuations at each wavenumber, will be taken to have
power-law scaling at low wavenumber:

Ē(k)=AE |k|1 − e k(|k|). (75)
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The strength of the long-range spatial correlations of the velocity field is
determined by the amount of energy in the low wavenumber modes, which
is primarily described by the infrared scaling exponent e. Larger values of e

correspond to stronger long-range spatial correlations in the shear flow,
but we restrict attention to e < 2 so that the total energy of the shear flow is
finite. (To examine the e Q 2 limit of very strong long-range correlations,
the scaling coefficient AE should be taken to scale with (2 − e) so as to keep
the energy of the shear flow bounded.) The function k(k) is a smooth
dimensionless function on k > 0 which satisfies k(0)=1 and decays suf-
ficiently rapidly so that Ē(k)+k |Ē −(k)| is bounded by a monotonically
decreasing, integrable functions. AE is a constant amplitude prefactor with
appropriate dimensions. The correlation time y(k) of the Eulerian velocity
field shear mode of wavenumber k will be assumed to be a smooth,
decreasing function of k (as it is in most physical situations) with power-
law scaling at low wavenumbers:

y(k) ’ Ay |k|−z as k Q 0,

with constant amplitude prefactor Ay > 0 and infrared scaling exponent
z \ 0.

We remark that our assumptions on k(k) omit an infrared (low
wavenumber) cutoff of energy, but our results can be readily applied if an
infrared cutoff is present. Indeed, if the energy spectrum Ē(k) vanishes for
sufficiently small wavenumber |k| [ k0, then the statistical behavior for the
tracer in the literal long time limit is described by the rules for e Q − ..
More interestingly, if the cutoff wavenumber k0 is sufficiently small, then
the full panorama of long-time asymptotics for the tracer behavior derived
here apply over an intermediate asymptotic regime which is short
compared to the time it takes for the tracer to move over a distance com-
parable to 1/k0 and long compared to all finite physical time scales not
involving k0.

We will often find it instructive to examine a version of the IS-SFCS
Model with a steady shear velocity field v(x). In this case, we simply set

Ê(k, w)=Ē(k) (steady shear velocity),

with Ē(k) prescribed in (75).
The IS-SFCS model just described is virtually identical to what was

called the Random Spatio-Temporal Shear model in ref. 49, Section 3.3,
and is based on ideas extending back to. (2) The IS-SFCS model encompas-
ses velocity fields with strong long-range spatio-temporal correlations (for
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b close to 1, e close to 2, and z moderate or large), which makes it a severe
test case for the closure approximation.

4.2. Large-Scale, Long-Time Renormalization of Shear-Transverse

Motion

The shear-transverse motion is entirely independent of the shear-par-
allel motion, and we therefore first focus on the approximate Green’s func-
tion Ĝx, app(k, t) for the shear-transverse motion, which may be identified
with Ĝapp(k, p=0, t) (see Eq. (17)). This analysis will reveal the long-time
growth predicted for the mean-square tracer displacement across the shear,
and thereby set a specific linkage between the rescaling factors a and r. The
renormalized Green’s functions Ĝ̄x, app(k, t) for the cross-shear transport
derived in this process will then be used in Section 4.3 as a stepping stone
for obtaining the full renormalized Green’s functions Ĝ̄app(k, p, t) along
with the appropriate connection between the rescaling factors, a, l, and r,
predicted by the various closure approximations.

We begin in Section 4.2.1 by describing the renormalization of the
exact Green’s function Gx(x, t) associated purely to the shear-transverse
sweeping motion X(t) of the tracer. After summarizing the exact results, we
compare these with the renormalization of the approximate closure equa-
tions in the subsequent subsubsections. Note that the only scaling factors
which are connected to the shear-transverse dynamics are a and r; l plays
no role.

4.2.1. Exact Results for Renormalization of Shear-Transverse
Green’s Function

As shown in Eq. (17), the exact shear-transverse Green’s function has
the Gaussian form:

Ĝx(k, t)=e−1
2 k2

m2, 0(t). (76)

We could renormalize this function directly, but to maintain continuity
with our treatment of the closure approximations where exact solutions are
not always available, we instead (equivalently) renormalize the exact
evolution equation for this Green’s function:

“Ĝx

“t
=−Dx(t) k2Ĝx, (77)
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with Ĝx |t=0=1 and where the time-dependent diffusion coefficient appear-
ing in this equation may be expressed, using Eq. (19), as follows:

Dx(t)=
1
2

dm2, 0(t)
dt

=o+F
t

0
Rw(s) ds. (78)

We now rescale to large scales and long times according to the prescription
(70) (with Ĝapp replaced by Ĝ), and find that the rescaled Green’s function
obeys the following equation:

“Ĝ (r)
x

“t
=−1a2(r) Dx(t/r2)

r2
2 k2Ĝ (r)

x , (79)

with Ĝ (r)
x |t=0=1. Now the relationship between a and r is chosen so as to

yield the most nontrivial equation possible in the limit r Q 0.

Case of No Molecular Diffusion. When o=0, then the rescaling
parameters only appear in the combination

a2(r) D (0)
x (t/r2)

r2 , (80)

where

D (0)
x (t)=F

t

0
Rw(s) ds

is the shear-transverse diffusivity contributed by the velocity fluctuations.
We wish to render the combination (80) finite in the r Q 0 limit so as to
capture the nontrivial dynamics on the large scales and long times. Clearly
the proper scaling will require the ascertainment of the long-time behavior
of D (0)

x (t), which can be obtained rigorously through asymptotic evalua-
tion (17) of the oscillatory integral in (71) expressing Rw(t) in terms of
Ew(w):

D (0)
x (t) ’ KÄ

xtb as t Q .,

where

KÄ

x=2−b
`p AE, w

C((1 − b)/2)
C((2+b)/2)

. (81)
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Specifically, if b=0, the fluctuating velocity field w(t) produces a finite
enhanced diffusivity at long times:

Kg
x =

1
2

AE, w=F
.

0
Rw(s) ds. (82)

If b > 0, the velocity fluctuations give rise to a diffusivity which forever
grows with time, whereas if b < 0, the enhancement D (0)

x (t) of the diffusiv-
ity decays with time.

Consequently, we have:

1a2(r) D (0)
x (t/r2)

r2
2 ’ a2r−2 − 2bKÄ

xtb as r Q 0, t Q ..

A finite, nonzero limit will emerge if we link the space and time rescaling as
follows:

r=a1/(1+b). (83)

Note that the relation (83) is only consistent with a and r vanishing
together when − 1 < b < 1. Restricting ourselves to this range of param-
eters for the moment, we find the following equation for the renormalized
exact shear-transverse Green’s function Ĝ̄x(k, t)=lim a Q 0 Ĝx, app(k, t):

“Ĝ̄x

“t
=−KÄ

xtbk2Ĝ̄x, (84)

with Ĝ̄x |t=0=1. The renormalized equation for the shear-transverse tracer
motion is therefore a diffusion equation, with constant diffusion coefficient
for b=0 and a time-dependent diffusion coefficient for − 1 < b < 0 and
0 < b < 1. This equation is easily solved:

Ĝ̄x(k, t)=exp 1 −
1

1+b
k2KÄ

xtb+12 for − 1 < b < 1. (85)

This corresponds to a Gaussian real-space Green’s function (or tracer
PDF)

Ḡ(x, t)=
exp( − (1+b) x2/4KÄ

xtb+1)

`4pKÄ

xtb+1/(1+b)
for − 1 < b < 1. (86)
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The long-time asymptotics of the variance of the shear-transverse tracer
displacement may be read off from Eqs. (85) or (86) as

m2, 0(t) ’
2

1+b
KÄ

xtb+1 as t Q . for − 1 < b < 1, (87)

which agrees with what would have been obtained by taking a direct long-
time limit of the finite-time formula in (19) for m2, 0(t).

We note that specifying the initial condition for the renormalized
Green’s function in (84) is a somewhat subtle manner because the large-
scale, long-time asymptotic limit could introduce a discontinuity at t=0.
Here it is easily checked by renormalization of the exact solution (76) that
no such discontinuity plagues us here, but this issue will be significant for
the case considered next.

Trapping Case. For b < − 1, the diffusivity D (0)
x (t) decays suffi-

ciently rapidly that the tracer never progresses over large scales in a statis-
tical sense; its motion is trapped. Therefore, the appropriate scaling for
b < − 1 is a=1 and r2

Q 0 (at an arbitrary rate). In this limit process, the
right hand side of the rescaled equation (79) vanishes:

a2Dx(t/r2)
r2 k2 ’ KÄ

x(t/r2)b r−2k2
Q 0 for b < − 1.

Consequently, the renormalized equation for the shear-transverse Green’s
function reduces to a trivial form,

“Ĝ̄x

“t
=0,

but renormalization of the exact solution (76) shows that there will be a
discontinuity of Ĝ̄x(k, t) at t=0. While Ĝ̄x(k, t=0)=1,

lim
t Q 0

Ĝ̄x(k, t)=e−1
2 K°xk2

,

where (ref. 7 and ref. 49, Section 3.1.2.4)

lim
t Q .

m2, 0(t)=K°x — 4 F
.

0
Ew(w) w−2 dw for b < − 1. (88)

Thus, for t > 0, the renormalized Green’s function is just:

Ĝ̄x(k, t) — e−1
2 K°xk2

for b < − 1,
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Table I. Long-Time Asymptotics of Mean-Square Tracer Displacement m2, 0(t)

Across the Shear, with o=0. Scaling Coefficients Are Given by (81),

and (82) and (88) (Reproduced/Adapted from ref. 49)

Asymptotic mean square
displacement

Parameter regime lim t Q . m2, 0(t) Qualitative behavior

b < − 1 K°xt0 trapping

− 1 < b < 0
2

1+b
KÄ

xt1+b subdiffusive

b=0 2Kg
x t diffusive

0 < b < 1
2

1+b
KÄ

xt1+b superdiffusive

which corresponds to a physical-space shear-transverse Green’s function
(or tracer displacement PDF) Ḡx(x, t) which remains fixed at a Gaussian
distribution with mean zero and variance K°x.

The various behaviors for the tracer motion across the shear which we
have obtained are summarized in Table I (ref. 49, Section 3.1). For b=0,
ordinary diffusive (linear) growth of the mean-square tracer displacement
prevails at long times. For 0 < b < 1, the mean-square tracer displacement
grows faster than linearly in time, and the motion is said to be superdiffu-
sive. On the other hand, for − 1 < b < 0, the mean-square tracer displace-
ment grows more slowly than linearly in time, and the motion is subdiffu-
sive. For b < − 1, the mean-square tracer displacement saturates at a finite
value, and is said to be trapped in the shear-transverse direction.

Table I illustrates a phenomenon which will permeate much of the
following discussion: the long-time behavior of the tracer motion falls into
qualitatively different categories depending on some parameters (such as b

here) describing the properties of the random flow field (refs. 2, 5, 7 and
ref. 49, Section 3). The parameter space b < 1 may therefore be divided
into different phase regimes of qualitatively different long-time tracer
behavior, separated by phase transitions or phase boundaries. The scaling
exponent n of the long-time asymptotics of the mean-square displacement

m2, 0(t)=O(tn) as t Q ., (89)

can serve as an order parameter to distinguish the phase regimes, and is
plotted in Fig. 2. In the present discussion of shear-transverse motion with
o=0, there is a definite phase transition at b=−1 because the formulas
for the long-time asymptotics are sharply different for b < − 1 and b > − 1,
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Fig. 2. Phase diagram for scaling exponent (89) of long-time asymptotics of sweeping
motion X(t) in IS-SFCS model with o=0.

and the graph of the scaling exponent n as a function of b changes
abruptly. The renormalized behavior at the phase transition value b=−1
involves logarithms, and we choose not to dwell on these special boundary
cases to avoid distraction from the main development.

Case of Nonzero Molecular Diffusion. The presence of molecular
diffusion o > 0 does not affect the renormalization when 0 < b < 1 because
then the fluctuating velocity field creates superdiffusion across the shear,
and therefore dominates the contribution to Dx(t) at long times. If
however, b < 0 or there is no fluctuating cross sweep (w(t) — 0), then

a2(r) Dx(t/r2)
r2 ’

a2

r2 o as r Q .,

so the appropriate choice of temporal scaling function is r=a, and the
renormalized equation is the ordinary diffusion equation:

“Ĝ̄x

“t
=−ok2Ĝ̄x,

with Ĝ̄x |t=0=1.
If b=0, then both molecular diffusion and the fluctuating velocity

field w(t) give rise to a codominant diffusive contribution at long times,
with rescaling r=a. The renormalized equation for the Green’s function is
an ordinary diffusion equation with constant diffusivity o+Kg

x , where the
turbulent enhancement Kg

x is given in (82).
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Summary. The appropriate relationship between the temporal
rescaling parameter r and the spatial rescaling parameter a for shear
transverse motion may be summarized for most cases as:

r=a1/n, (90)

where

n=˛1+b if o > 0 and 0 [ b < 1, or o=0 and − 1 < b < 1,

1 if o > 0 and b < 0.
(91)

The only case not covered above is the trapping situation in which o=0
and b < − 1. In this case, a should be held fixed at a=1 while r Q 0.

The renormalized equation for the shear-transverse Green’s function
takes the general form

“Ḡx

“t
=D̄x(t)

“
2Ḡx

“x2 , (92)

in physical space, or equivalently

“Ĝ̄x

“t
=−k2D̄x(t) Ĝ̄x(k, t), (93)

in Fourier space. The initial data for the renormalized shear-transverse
Green’s function is

Ḡx(x, t=0)=˛e−x2/(2K°x)

`2pK°x
if b < − 1 and o=0 (trapping case),

1 otherwise (94)

in physical space, and

Ĝ̄x(k, t=0)=˛e−1
2 K°xk2

if b < − 1 and o=0,

1 otherwise.
(95)

in Fourier space. The renormalized diffusivity D̄x(t) has the following form:

D̄x(t)=˛
KÄ

xtb for o=0, − 1 < b < 1, or o > 0, 0 < b < 1,

o for o > 0, b < 0,

o+KÄ

x for o > 0, b=0,

0 for o=0, b < − 1.

(96)
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4.2.2. Renormalization of Closure Approximations of
Shear-Transverse Green’s Function

We next turn to the renormalization of equations for the shear-trans-
verse Green’s function produced by the closure approximations. We collect
and compare the results here, and indicate the manner in which the
approximate equations are renormalized in Appendix C.1:

1. The relation between the rescaling parameters a and r2 are
correctly predicted by all approximations, except for the DIA in the
parameter range b < − 1

2 .

2. By taking p=0 in the QLA (34), RLA (69), and MDIA (63)
equations, we find that each of these approximations produce the exact
equation (77) for the shear-transverse Green’s function. Consequently, the
large-scale, long-time renormalization of the shear-transverse tracer motion
in each of these approximations will necessarily agree with the exact
renormalization results described in (90)–(96).

3. The renormalized QNA and DIA equations, however, are correct
only when b=0, or o > 0 and b [ 0 (in which case D̄x(t) is a positive con-
stant). In the cases where the QNA and DIA do not renormalize correctly,
they predict a persistently non-Gaussian form for the renormalized shear-
transverse Green’s function, although the shear-transverse mean-square
displacement m2, 0(t) in (19) is correctly predicted for all time.

We describe next in some detail the results of the renormalization of
the DIA and QNA in the parameter regimes where they disagree with the
exact results. The details behind the renormalization procedure for QNA
and DIA may be found in Appendix C.1.

For the case of superdiffusive shear-transverse motion (b > 0), the
QNA and DIA predict the following incorrect nonlocal renormalized
equations with convolution in time, to be compared with the exact local
time-dependent diffusion equation (84):

“Ĝ̄x, QNA

“t
=−k2 1F

t

0
D̄ −

x(s) Ĝ̄x, QNA(k, t − s) ds2 , (97)

with Ĝ̄x, QNA |t=0=1, and

“Ĝ̄x, DIA

“t
=−k2 1F

t

0
D̄ −

x(s) Ĝ̄x, DIA(k, s) Ĝ̄x, DIA(k, t − s) ds2 , (98)

with Ĝ̄x, DIA |t=0=1. Here D̄ −

x(t) — dD̄x/dt.
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For the regime of subdiffusive sweeping motion (o=0 and − 1 <
b < 0), the renormalized QNA equations takes a similar convolution-in-
time form,

“Ĝ̄x, QNA

“t
=−k2 1F

.

0
D̄ −

x(s)(Ĝ̄x, QNA(k, t − s) − 1) ds2 , (99)

with Ĝ̄x, QNA |t=0=1, which again disagrees with the exact local time-
dependent diffusion equation (84). For a statistically trapped motion (o=0
and b < − 1), the QNA equations renormalize to a correct trivial equation
but with incorrect initial data:

“Ĝ̄x, QNA

“t
=0, Ĝ̄x, QNA(k, t=0)=51+

1
2

k2K°x6
−1

.

The physical-space solution for the renormalized QNA shear-transverse
Green’s function is

Ḡx, QNA(x, t)=
e−`2/K°x |x|

`2K°x
,

which corresponds to an exponential distribution with the finite variance
K°x. The exact renormalized solution has a Gaussian profile with the same
variance.

The DIA renormalizes to the natural analogue of the renormalized
QNA equation (99) when o=0 only over the restricted domain of param-
eters − 1

2 < b < 0:

“Ĝ̄x, DIA

“t
=− k2 F

.

0
D̄ −

x(s)(Ĝ̄x, DIA(k, s) Ĝ̄x, DIA(k, t − s) − Ĝ̄x, DIA(k, t)) ds
(100)

with Ĝ̄x, DIA |t=0=1. The DIA predicts a spurious phase transition at the
value b=− 1

2 to another subdiffusive regime for b < − 1
2 , with the incorrect

rescaling relationship a=r1/2, and the following renormalized equation:

“Ĝ̄x, DIA

“t
=−K°4, DIAk4Ĝ̄x, DIA, (101)

with Ĝ̄x, DIA |t=0=1. This is readily solved to give

Ĝ̄x, DIA(k, t)=e−K°4, DIAk4t. (102)
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This renormalized Green’s function is unrealizable in the sense that it
cannot be the characteristic function for the random process X(t)
(see Eq. (12)). This follows either from Marcinkiewicz’s theorem, (61) which
states the cumulant generating function ln Ĝ(k, t) cannot be a finite poly-
nomial of degree higher than two, or by directly noting that the fourth
order cumulant, mDIA

4, 0 (t), associated to Eq. (102) is negative. We therefore
conclude that the DIA suffers serious deficiencies in representing the sta-
tistics of a tracer being swept at a subdiffusive rate. The phase diagram for
the scaling functions is altered from Fig. 2 to that shown in Fig. 3, and the
DIA prediction becomes nonsensical at large scales and long times for
b < − 1

2 . This is presumably a manifestation of the inability of the DIA to
track the influence of random coherent oscillations in the environment,
ref. 70, Section 3.3.

All told, then, it appears that the DIA is the most problematic closure
approximation for predicting the sweeping motion X(t), though its equa-
tion for Ĝx, DIA(k, t) is the most complicated of the approximations. We
examine this issue in more detail by consideration of the long-time behav-
ior of the cumulants m2, 0(t) and m4, 0(t) in Section 5.1.

For the later full renormalization of the closure approximations, it will
be helpful to represent the shear-transverse terms of the renormalized QNA
and DIA equations in some unified fashion. It is readily checked then that
the following equation:

“Ĝ̄x, QNA

“t
=−k2 “

“t
1F

t

0
D̄x(s) Ĝ̄x, QNA(k, t − s) ds2 , (103)

with Ĝ̄x, QNA |t=0=1, is equivalent to the QNA equations stated above for
all the various cases considered. We are unaware of a way to write down a

–2 –1 0 1
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2

β

ν

Fig. 3. Phase diagram for scaling exponent (89) of long-time asymptotics of sweeping
motion X(t) in the IS-SFCS model with o=0, under DIA.
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corresponding single unified equation for the renormalized DIA equation.
We therefore simply write

“Ĝ̄x, DIA

“t
=DDIA(Ĝ̄x, DIA(k, · ), k, t), (104)

with Ĝ̄x, DIA |t=0=1, and where DDIA is a formal operator defined in one of
the following ways, depending on the parameters of the model:

• For diffusive sweeping motion,

DDIA(Ĝ̄DIA(k, p, · ), k, t)=−(o+Kg
x ) k2Ĝ̄DIA(k, p, t),

for b=0 or o > 0, b < 0, where Kg
x is defined in (82).

• For superdiffusive sweeping motion (0 < b < 1) refer to Eq. (98)
with Ĝ̄x, DIA Q Ĝ̄DIA.

• For subdiffusive or trapping sweeping motion (o=0, − 1
2 < b < 0),

refer to Eq. (100) with Ĝ̄x, DIA Q Ĝ̄DIA.

We abandon the case (o=0, b < − 1
2) as hopelessly lost for the DIA, since

the sweeping motion is already predicted in an unrealizable fashion, and
the incorrect scaling relationship between a and r will contaminate the
renormalization results for the shear-parallel motion.

We also define the initial data for the renormalized shear-transverse
QNA Green’s function in physical space:

Ḡx, QNA(x, t=0) — ˛e−`2/K°x |x|

`2K°x
if b < − 1, o=0,

d(x) otherwise,

(105)

and in Fourier space:

Ĝ̄x, QNA(k, t=0) — ˛[1+1
2 k2K°x]−1 if b < − 1, o=0,

1 otherwise.
(106)

Recall that the range b < − 1, o=0 corresponds to the trapping situation.

4.3. Large-Scale, Long-Time Renormalization of Total Tracer

Motion

With the large-scale, long-time behavior of the shear-transverse trans-
port fully discussed, we are now prepared to consider the shear-parallel
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motion and thereby renormalize the full Green’s function. The relationship
between the scaling parameters a and r has been set by the previous analy-
sis of Section 4.3, and therefore we are left with finding an appropriate
relationship between r and l which will lead to a nontrivial fixed point for
the rescaled Green’s function Eq. (70). We begin with a discussion of what
is known for the large-scale, long-time behavior of the exact Green’s func-
tion, then show how well the renormalizations of the various closure
approximations agree with the exact picture.

4.3.1. Renormalization of Exact Green’s Function

The exact Green’s function for the shear-transverse motion satisfies an
explicit PDE (77). No such closed evolution equation is known for the full
Green’s function Ĝ(k, p, t). One can, however, rigorously renormalize the
functional integral expression (15) for it. Under the rescaling (70), this
formula reads:

Ĝ (r)(k, p, t)=e−ol
2
r

− 2p2tOe−iakX(t/r
2) − 1

2 l
2p2M(t/r

2)Pw, Wx
. (107)

where

M(t)=F
t

0
ds F

t

0
dsŒ F

R
dq Ē(q) f((s − sŒ)/y(q)) e iq(X(s) − X(sŒ)).

We then wish to find the relationship between the scaling functions l and
r which, along with the appropriate relationship (91) between the scaling
functions a and r found in Section 4.2, produces a nontrivial limit for
Ĝ (r)(k, p, t) as r Q 0. The details of the renormalization procedure are
presented in refs. 2 and 5, and will not be reproduced here. We will simply
state and discuss the results to set the framework for comparison with
the renormalization of the closure approximations. We remark that the
renormalized equations stated in refs. 2 and 5 are those resulting from an
isotropic renormalization (with a=l always enforced), whereas we are
employing an anisotropic renormalization in which the spatial rescaling
may proceed at different rates in the shear-parallel and shear-transverse
directions. Moreover, the work (2, 5) incorporated an infrared (low wave-
number) cutoff. The renormalization procedure developed in refs. 2 and 5
is, however, easily modified to treat anisotropic renormalization with no
infrared cutoff, and we shall present these modified results.

To any particular choice of cross-shear transport processes, there is
associated a phase diagram in (e, z) parameter space, demarcating different
regimes of different large-scale, long-time behavior of the tracer motion
along the shear. Recall from Section 4.1 that these parameters characterize
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Table II. Phase Regimes for Shear-Parallel Transport

Label Transport rate Dominant mechanism limiting transport

D diffusive all relevant
SD-t superdiffusive temporal fluctuations in v(x, t)
SD-o superdiffusive molecular diffusion o

SD-w superdiffusive random sweeping w(t)

the large-scale, long-time statistical properties of the shear velocity field,
just as b characterized the long-time properties of the fluctuating cross
sweep. We summarize in Table II the phase regimes that emerge.

The phase regimes and transitions in the large-scale, long-time behav-
ior of a tracer in a steady shear flow can be deduced in most cases from the
(e, z) phase diagrams by taking a horizontal, constant z slice in the z Q .

limit (refs. 2, 5 and ref. 49, Section 3). The reason for this is that the
strength of the low wavenumber modes of the shear velocity field play the
greatest role in determining the nature of the tracer transport, and as
z Q ., these low-wavenumber shear modes have correlation times y(k) ’

Ay |k|−z
Q ..

We will first present the renormalized equations for one (or zero)
active particular cross-shear transport mechanism, then provide a summary
for the renormalization picture for superpositions of cross-shear transport
processes.

Case of No Cross-Shear Transport. When o=w(t) — 0, then the
phase diagram for the shear-parallel tracer motion is presented in Fig. 4

z

D

SD –

–2 –1 0 1 2

1

2

ε

t

Fig. 4. Phase diagram for long-time asymptotics of shear-parallel transport in Infrared
Scaling Shear Flow with Cross Sweep model with o=w(t)=0. The phase transition occurs
along the line e+z=2.
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and breaks up into two regimes, one diffusive (D), and one superdiffusive
(SD-t). As we are not yet including any cross-shear transport mechanisms,
the long-time tracer motion in both the superdiffusive regime and diffusive
regime is determined only by the temporal flucutations in the shear velocity
field.

D. The diffusive regime is the region e+z < 2, over which space and
time are diffusively linked: r=l. The renormalized Green’s function in the
D regime obeys an ordinary diffusion equation:

“Ḡ
“t

=K̃g
0

“
2Ḡ

“y2 ,

with Ḡ|t=0=d(x) d(y), and a constant diffusion coefficient:

Kg
y =F

.

0
F

R
E(q, t) dq dt=f̂(0) F

.

0
Ē(q) y(q) dq. (108)

SD-t. On the other hand, for e+z > 2, the tracer motion along the
shear is superdiffusive

r=lz/(2z+e − 2) ± l as l Q 0, (109)

and the renormalized equation for the Green’s function involves a growing,
time-dependent diffusivity:

“Ḡ
“t

=K̃Ä

0 t (z+e − 2)/z “
2Ḡ

“y2 , (110)

where Ḡ|t=0=d(x) d(y). The scaling constant here is given by Eq. (163b)
in ref. 49:

K̃Ä

0 =
2

e+z − 2
AEA (2 − e)/z

y F
.

0
f(s) s (2 − e − z)/z ds. (111)

The above results follow from the analysis of ref. 49, 3.3.1, along with
the observation that the PDF for the tracer displacement along the shear
must be Gaussian because it can be expressed as a definite integral over a
Gaussian random field.

Case of Molecular Diffusion. The introduction of molecular diffu-
sion o > 0 changes the phase diagram by broadening the D regime and
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Fig. 5. Phase diagram for long-time asymptotics of shear-parallel transport in Infrared
Scaling Shear Flow with Cross Sweep model with o > 0 and w(t)=0. The phase transition
lines lie along segments of e=0, z=2, and e+z=1.

creating a new regime of superdiffusive behavior along the shearing direc-
tion besides SD-t, which we label SD-o (Fig. 5). Note that this phase
diagram is concerned with the shear-parallel transport; the cross-shear
transport is of course always diffusive in this case (r=a). The results we
present can be rigorously derived by adapting the procedure in ref. 2 to the
case in which the energy spectrum has no infrared cutoff, though the phase
diagram changes somewhat. The correspondence between our regimes and
those in ref. 2 are as follows: the D regime is Region I, the SD-t regime is
Region IV, and the SD-o regime is Region V.

D. In the D regime, space and time are diffusively linked (r=l) and
the renormalized equation is an ordinary diffusion equation:

“Ḡ
“t

=o
“

2Ḡ
“x2+Kg

y

“
2Ḡ

“y2 , (112)

with Ḡ|t=0=d(x) d(y). The constant renormalized diffusivity along the y
direction is enhanced due to the shearing motion:

Kg
y =o+F

.

0
F

R
E(q, t) Ĝx(−q, t) dq dt. (113)

We have stated the formula (113) in a form involving the shear-transverse
Green’s function because it is generally applicable for all random cross-shear
transport processes discussed in this section. For the particular case in which
tracers move across the shear only due to molecular diffusion, then

Ĝx(k, t)=e−ok2t. (114)
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The D regime describes precisely the energy spectra for which homoge-
nization theory (3, 19, 52, 56, 59) applies to the shear-parallel tracer motion.

SD-t. The SD-t regime has identical renormalized characteristics as
was presented above. Molecular diffusion is irrelevant under the renor-
malization in this regime.

SD-o. On the other hand, the temporal fluctuations of the velocity
field become negligible after renormalization in the complementary super-
diffusive regime, SD-o. Here molecular diffusion is the dominant cross-
shear mechanism limiting transport along the shearing direction. The
linkage between space and time rescaling in this domain is r=l2/(2+e) ± l

as l Q .. In contrast with the other two regimes, the renormalized Green’s
function in the SD-o regime is not a Gaussian. In fact, the PDF for the
shear-parallel tracer displacement is representable as a certain average of
Gaussians of different widths, and is therefore known by general principles
to have a broader-than-Gaussian shape. The reader is referred to the ref-
erences (refs. 2, 6 and ref. 49, Section 3.4.1.2) for further details about the
renormalized Green’s function for the SD-o regime; there will be some dif-
ferences in the details because of our anisotropic renormalization procedure.

Case of a Temporally Fluctuating Cross Sweep. The phase
diagram for the shear-parallel motion of a tracer in a flow with temporally
fluctuating cross sweep w(t) ] 0 but no molecular diffusion o=0 is pre-
sented in Fig. 6. It is qualitatively similar to the cases discussed already
for other cross-shear transport mechanisms, with a regime D with ordinary
diffusive behavior, and two different superdiffusive regimes: one (SD-t)
where temporal decorrelation of the velocity field plays the dominant role
in determining the tracer motion at large scales and long times, and one
(SD-w) where spatial decorrelation plays the primary role. The location of
the phase boundaries depend on the strength of the long-range correlations
of the fluctuating random field w(t), as described by the infrared scaling
exponent b of its energy spectrum (72). This phase diagram for a fluctuat-
ing cross sweep is identical to the one in which only molecular diffusion
is active (Fig. 5) when b=0, which is exactly the case in which the
tracer motion across the shear proceeds at an ordinary diffusive rate
(m2, 0(t) ’ 2Kg

x t as t Q .). As the strength of the long-range fluctuations of
w(t) as measured by the infrared scaling exponent b increases, i.e., in the
limit as b Q 1, the D regime is broadened to larger values of e, and the
phase transition between the two superdiffusive regimes slides to smaller
values of z. But as b decreases toward − 1, the vertical and horizontal
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boundaries of the SD-w regime slide up and left until they disappear
entirely (along with the SD-w regime) when b crosses the value − 1. Indeed,
for b < − 1, the cross-shear transport is so feeble that it is trapping (Sub-
paragraph 87)), and the large-scale, long-time behavior of the shear-parallel
motion is essentially the same as for the case of no cross shear transport
discussed above. (The diffusion constant in the D regime is slightly
modified by the weakly fluctuating field w(t) however, see ref. 49, Sec-
tion 3.3.4).

The phase diagram in Fig. 6 has been worked out rigorously for the
long-time behavior of the second order moments of the tracer displacement
along the shear, ref. 49, Section 3.3.4. The rigorous renormalization of the
full Green’s function, however, has not yet been accomplished for the case
of a fluctuating cross sweep as it has been for the case of molecular diffu-
sion and/or a mean cross sweep. (2, 5) We shall however, based on the
rigorous results available for these cases, conjecture that the phase diagram
for the renormalized tracer PDF along the shear is identical to that for
the second order moment of the shear-parallel tracer displacement. We
also conjecture that in the D regime, the tracer motion along the shear
homogenizes and is completely described by a constant diffusion coefficient
(113). It can be shown using the techniques of refs. 2 and 5 that the equa-
tion for the Green’s function will renormalize in the SD-t regime to the
same limit, (109)–(111) as in the other cases discussed. (The mode of cross-
shear transport should formally be irrelevant at large scales and long times
in this regime.) We expect, based on the rigorous results for the case of
molecular diffusion alone, that in the SD-w regime, the Green’s function
can only be described by a complicated nonlocal PDE. The appropriate

z

–2 –1 0 1 2

SD– D
1

2

ε

t

SD–w

Fig. 6. Phase diagram for long-time asymptotics of shear-parallel transport in Infrared
Scaling Shear Flow with Cross Sweep model with w(t) ] 0 and o=0. For − 1 < b < 1, the
phase boundaries lie along segments of the lines e+z=2, e= 2b

1+b , and z= 2
1+b . This figure uses

the value b=1
2 as an example.

Closure Approximations: A Comparative Study 615



space-time rescaling in this regime can be shown to be r=l2/(2+e − b(2 − e))

ref. 49, Section 3.2.3.
We pose the rigorous verification of these natural conjectures as an

open problem to the reader; the techniques of ref. 6 may be useful in this
regard.

Summary of Renormalized Green’s Functions for Arbitrary

Cross-Shear Transport. The renormalization of the tracer cross-shear
motion was summarized in (90)–(96). We now extend that summary to
include transport along the shear as well. Three possible renormalized
equations result, depending on the phase regime in which the parameters e

and z fall. The appropriate phase diagram for a given combination of cross-
shear transport processes is given by the one of Figs. 4, 5, or 6 which cor-
responds to the active cross-shear transport process which is fastest, ref. 49,
Chap. 3.

D. In general, there is always a D regime within which the space-time
rescaling along the shearing direction is diffusive (r=l) and the tracer
motion along the shear ‘‘homogenizes.’’ The renormalized Green’s function
satisfies a local diffusion equation

“Ḡ
“t

=D̄x(t)
“

2Ḡ
“x2+Kg

y

“
2Ḡ

“y2 , (115)

with Ḡ|t=0=Ḡ0
x(x) d(y) and where the diffusivity in the shear-transverse

direction may be time dependent (see 96) but the diffusivity in the shear-
parallel direction is a constant given by the following general formula:

Kg
y =o+F

.

0
F

R
E(q, t) Ĝx(−q, t) dq dt. (116)

Note that Ĝx(k, t) is just the shear-transverse Green’s function, which is
explicitly presented in (90)–(96).

SD-t. There is also generally a SD-t phase regime, where the shear-
parallel tracer motion is superdiffusive,

r=lz/(2z+e − 2) ± l as l Q ., (117)

and asymptotically dependent only on the spatio-temporal properties of the
shear velocity field and not on any cross-shear transport processes. The
renormalized Green’s function in the SD-t phase regime obeys a equation
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of diffusive type but with a shear-parallel diffusion coefficient which grows
with time:

“Ḡ
“t

=D̄x(t)
“

2Ḡ
“x2+D̄y(t)

“
2Ḡ

“y2 , (118)

with Ḡ|t=0=Ḡ0
x(x) d(y) and

D̄y(t) — K̃Ä

0 t (z+e − 2)/z as t Q .. (119)

The formula for the scaling coefficient K̃Ä

0 is presented in (111) and
depends only on properties of the shear velocity field. As a consequence of
(118), the renormalized Green’s function is Gaussian.

SD-s. When an effective cross-shear transport mechanism is present,
then a third phase regime, which we will generically refer to as SD-s,
completes the phase diagram. The SD-s regime could be either of SD-o,
SD-w, or mixed type, depending on the relative strength of the cross-shear
processes. In the SD-s phase regime, the tracer motion at large scales and
long times is superdiffusive (r ± l) and dependent only on the fastest cross-
shear transport process present and on the spatial structure of the velocity
field. In other words, the temporal fluctuations of the velocity are too slow
to play a leading role in affecting the coarse-grained tracer behavior, so the
renormalized limit is the same as it would be if the velocity field were
frozen (steady) in time. The linkage between the space-time rescaling func-
tions in the SD-s regime is generally given by r=a1/n=l2/(4+n(e − 2), where n

is given in (91). (Note how the exponent n describing the rate of cross-shear
transport explicitly influences the rescaling function l in the SD-s regime,
but not in the SD-t regime, see Eq. (117)). The renormalized Green’s func-
tion in the SD-s regime is broader-than-Gaussian and does not solve a local
PDE.

4.3.2. General Remarks About Renormalization of Closure
Approximations

We now present the renormalized equations predicted by the closure
approximations, and compare them with the exact ones described above.
Just as in the exact analysis, each closure approximation will predict one
of three classes of renormalized equations depending on the values of the
infrared scaling parameters and whether o > 0. Moreover, the DIA, RLA,
and MDIA always correctly locate the phase boundaries as well as the
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relationship between the rescaling variables a, l, and r. Therefore, for these
approximations, we can directly compare their predictions with the exact
results, phase regime by phase regime.

The QNA and QLA, however, both completely miss the interaction
between the fluctuating cross sweep w(t) and the shear flow v(x, t). Con-
sequently, whenever w(t) is the dominant cross-shear transport mechanism,
the phase diagram will be incorrectly predicted by the QNA and QLA.

The mechanics of renormalizing the various approximations are
mostly contained within Appendix C.

4.3.3. Renormalized QNA Green’s Function

The QNA ignores the influence of w(t) on shear-parallel transport,
and generally predicts non-Gaussian renormalized equations except in the
D regime, where a constant-coefficient, ordinary diffusion equation results.
But none of the non-Gaussian renormalized equations predicted by QNA
are correct. We conclude therefore that the renormalized QNA Green’s
function is exact only within the D regime, when w(t) — 0.

We now report the renormalized equations predicted by QNA in the
various phase regimes. See Appendix C for the details. We will assume in
what follows that w(t) — 0 or that at least the fluctuating cross sweep w(t)
is not the dominant cross-sweep mechanism. Only in these situations will
QNA produce the correct phase diagram and the correct relationship
between the scaling functions r, a, and l.

D. An ordinary diffusion equation (115) for the QNA Green’s func-
tion is predicted in the D Regime, with renormalized diffusivity:

Kg, QNA
y — o+F

.

0
F

R
E(q, t) e−oq2t dq dt.

This is in turn equal to the correct diffusivity Kg
y (116) whenever w(t) — 0.

SD-t. In the SD-t regime, the renormalized QNA equation is:

“Ĝ̄QNA

“t
=−ok2Ĝ̄QNA − p2 F

t

0
Ĝ̄0(k, 0, s) D̄ −

y(s) Ĝ̄QNA(k, p, t − s) ds, (120)

with Ĝ̄QNA |t=0=Ĝ̄0
x, QNA(k) d(p) and Ĝ̄0

x, QNA(k) defined in (105). We have
introduced here the function Ĝ̄0(k, p, t) representing the large-scale, long-
time limiting behavior of the Green’s function in absence of random
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velocity fluctuations (see Appendix A), Ĝ0(k, p, t)=e−o(k2+p2) t. Direct
renormalization of this function results in the expressions:

Ĝ̄0(k, p, t)=˛e−o(k2+p2) t if o > 0,

1 if o=0.
(121)

Also, note that D̄ −

y(t)=dD̄y/dt is the time derivative of the exact renor-
malized, time-dependent diffusivity in the SD-t regime.

The exact renormalized equation (118) differs from this QNA equation
in the SD-t Regime in the following major respects:

1. The exact renormalized equation is a PDE which is local in space
and time, whereas the QNA involves a spurious time convolution.

2. Moreover, when o > 0, Ĝ̄0(k, 0, t) is a transcendental function
of k, and the renormalized QNA equation cannot therefore be expressed as
a PDE in physical space variables.

3. The solution to the exact renormalized equation is Gaussian,
whereas it can be readily checked that no Gaussian satisfies the QNA
renormalized equation.

4. The appearance of Ĝ̄0(k, 0, s) in the QNA convolution kernel has
no analogue in the exact equation.

SD-o. We consider only the SD-o regime with dominant spatial
decorrelation, since QNA will clearly give the wrong equation in the SD-w
regime as the effects of the fluctuating cross sweep on the shear-parallel
transport are ignored. The renormalized equation for the Green’s function
is:

“Ĝ̄QNA

“t
=−ok2Ĝ̄QNA − p2 F

t

0
d̄ (o)

QNA(k, s) Ĝ̄QNA(k, p, t − s) ds, (122)

with Ĝ̄QNA |t=0=1 and where

d̄ (o)
QNA(k, t)=AE F

R
|q|1 − e e−o(k − q)2 t dq. (123)

Both the renormalized exact and QNA equations are nonlocal, but have
different structure. We shall assess the quantitative difference between the
exact and QNA large-scale, long-time solutions in the SD-o regime of a
steady velocity field through consideration of the fourth order cumulant of
the shear-parallel displacement, m0, 4(t), in Section 5.2.3.
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4.3.4. Renormalized QLA Green’s Function

The QLA always predicts a Green’s function which is Gaussian when
considered separately as a function of x and y, and which satisfies a local
diffusion equation with possibly time-dependent diffusivity. Moreover, the
QLA correctly predicts the diffusivity whenever w(t) — 0. The renormalized
QLA Green’s function is jointly Gaussian and exact under the following
circumstances:

1. In the D regime, when w(t) — 0.

2. In the SD-t regime.

3. In a steady flow v(x, t)=v(x) with o=w(t)=0.

The only regime in which the QLA predicts a renormalized Green’s
function which is not fully Gaussian is in the SD-o regime, where the
renormalized QLA Green’s function satisfies the equation:

“ĜQLA

“t
=−D̄x(t) k2ĜQLA − D̄y, QLA(k, t) p2ĜQLA, (124)

with ĜQLA |t=0=1 and where

D̄y, QLA(k, t)=AE F
t

0
F

R
q1 − ee−o(q2 − 2qo) s dq ds.

While this equation is nonlocal in physical space, like the exact result, it
suffers from the particular inaccuracy of predicting that the statistics for
Y(t) will be always Gaussian in the SD-o regime whereas the exact statis-
tics are persistently broader-than-Gaussian.

The QLA also misses the influence of w(t) on the diffusion coefficient
in the D regime.

4.3.5. Renormalized DIA Green’s Function

From Sections 3.1 and 3.3, we see that the DIA equations are closely
related to the QNA equations, with the key difference that occurrences of
the ‘‘bare’’ Green’s function Ĝ0(k, p, t) in the QNA equations are replaced
by the full Green’s function ĜDIA(k, p, t) in the DIA equations. This makes
the DIA equations nonlinear, and not generally amenable to explicit solu-
tion by Laplace transform. Moreover, this change makes the DIA distinctly
better than the QNA whenever the fluctuating cross sweep w(t) is the
strongest cross-shear transport mechanism, because the DIA does recog-
nize that this fluctuating cross sweep influences the shear-parallel transport.
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In fact, the DIA renormalization always predicts the correct relationships
among the rescaling parameters a, l, and r, and consequently the correct
phase diagram. The actual renormalized equations themselves, however, are
only correct within the D regime, when w(t) — 0, which is the same condition
under which the QNA renormalization is exact. To gain some understand-
ing of whether the renormalized DIA or renormalized QNA equations are
closer to the truth when this condition is not satisfied, we will examine
quantitatively the long-time asymptotics of the fourth order cumulant of
the shear-parallel displacement in some special submodels in Section 5. We
will find that even though the DIA equations are more complicated, they
are not always superior to the QNA equations, particulalry when w(t) — 0.

We now report the renormalized DIA equations in the various phase
regimes. See Appendix C for the details. Recall the definition of the differ-
ential operator DDIA associated to the shear-transverse motion, which is
presented following Eq. (104). As discussed in Section 4.2.2, we have
already surrendered the case o=0, b < − 1

2 , where the predicted (subdiffu-
sive) shear-transverse motion is already hopelessly befuddled, and exclude
this range of parameters from further consideration below.

D. The DIA Green’s function renormalizes in the D regime to an
equation which is diffusive in the shear-parallel direction:

“Ĝ̄DIA

“t
=DDIA(Ĝ̄DIA(k, p, · ), k, t) − p2Kg, DIA

y Ĝ̄DIA, (125)

with Ĝ̄DIA |t=0=1, and renormalized shear-parallel diffusivity:

Kg, DIA
y — o+F

.

0
F

R
E(q, t) ĜDIA(−q, 0, t) dq dt. (126)

Note that ĜDIA(−q, 0, t) is the unrenormalized solution of the shear-trans-
verse DIA equation (104), which has nothing to do with the constant
Kg, DIA

y . Therefore, Eq. (126) is really a closed formula, though we are not
aware of an explicit expression for ĜDIA(−q, 0, t). When w(t)=0, then
D̄x(t) — o and the exact Gaussian renormalized solution to Eq. (115) is also
a solution to the renormalized DIA equation (125). But when w(t) ] 0,
even if it is not the dominant cross-shear transport mechanism, the solu-
tions to the renormalized DIA and renormalized exact equations differ in
two aspects:

1. the shear-transverse motion X(t) is incorrectly predicted to be non-
Gaussian by the DIA, and
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2. the effective diffusion coefficient Kg, DIA
y for the shear-parallel

motion Y(t) differs from the exact result precisely because of the discrep-
ancy between the predicted and exact statistics of X(t).

SD-t. The renormalized DIA equation in the SD-t regime is

“Ĝ̄DIA

“t
=DDIA(Ĝ̄DIA(k, p, · ), k, t)

− p2 F
t

0
D̄ −

y(s) Ĝ̄DIA(k, p, s) Ĝ̄DIA(k, p, t − s) ds, (127)

with Ĝ̄DIA |t=0=1. This equation differs from the exact renormalized equa-
tion (118) in the SD-t Regime in the same ways that the QNA renormalized
equation (120) does. Indeed, the only difference between the renormalized
equations is in the treatment of the shear-transverse transport and the
appearance of Ĝ̄DIA(k, p, s) in place of Ĝ̄0(k, 0, s). The same remarks as
were made for the QNA in the SD-t regime apply for the DIA.

SD-s. In the SD-s regime, the renormalized DIA equation is:

“Ĝ̄DIA

“t
=DDIA(Ĝ̄DIA(k, p, t=0), k, t)

− p2 F
t

0
d̄DIA(k, p, s) Ĝ̄DIA(k, p, t − s) ds, (128)

with Ĝ̄DIA |t=0=1 and where

d̄DIA(k, p, t)=AE F
R

|q|1 − e Ĝ̄DIA(k − q, p, t) dq. (129)

This equation is generally nonlocal with non-Gaussian solutions. The exact
renormalized Green’s function also has these properties in the SD-o and
SD-w regimes, but the details differ in a way which we will explore quanti-
tatively in Section 5.2.4.

Furthermore, when the shear flow is steady v(x, t)=v(x) and there
is no cross-shear transport, o=w(t)=0, the DIA again predicts an
incorrectly non-Gaussian Green’s function. Even worse, for e < 1

2 , which
includes the full regime of trapping behavior and part of the regime of
subdiffusive behavior, the DIA predicts the wrong rescaling function rela-
tionship l=r1/2 and an unrealizable Green’s function. The problems here
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are direct analogues of those discussed for subdiffusive sweeping motion in
Section 4.2.2.

4.3.6. Renormalized MDIA Green’s Function

Like the DIA, the MDIA equations are nonlinear and not explicitly
solvable, and renormalization must therefore proceed through assumptions
whose self-consistency are subsequently checked. As shown in Appendix C,
the MDIA does reproduce the correct phase diagram and the exact rela-
tionships between the scaling parameters a, l, and r. Moreover, the
renormalized MDIA Green’s function is exact in the following situations:

1. within the D regime.
2. within the SD-t regime.
3. whenever o=0 and w(t)=0.

In other words, only in the SD-o and SD-w regimes does the renor-
malized MDIA Green’s function suffer any inaccuracy.

These results can be recast as follows: The MDIA reproduces, under
renormalization, a Gaussian form for the Green’s function with exact
evolution laws for its mean and covariance whenever the exact renor-
malized Green’s function is Gaussian.

D. The renormalized MDIA Green’s function is exact in the D
Regime. It is a Gaussian which obeys the homogenized diffusion equation
(115) with exact diffusion coefficients.

SD-t. The renormalized MDIA Green’s function is exact in the SD-t
Regime. It is a Gaussian which obeys the time-dependent diffusion equa-
tion (118) with exact coefficients.

SD-s.

“Ĝ̄MDIA

“t
=−k2D̄x(t) Ĝ̄MDIA − p2D̄y, MDIA(k, p, t) Ĝ̄MDIA, (130)

with Ĝ̄MDIA |t=0=Ĝ̄x, 0(k). Here

D̄y, MDIA(k, p, t)=AE F
t

0
F

R
|q|1 − e

Ĝ̄MDIA(k − q, p, s)

Ĝ̄MDIA(k, p, s)
dq ds. (131)

and Ĝ̄x, 0(k) is defined in (95). Unlike the other regimes, this renormalized
MDIA equation is nonlinear and nonlocal. This is qualitatively in accord
with the exact results known for the SD-o regime. (2)
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We assess the accuracy of the MDIA renormalized equations (130) in
the SD-o regime through consideration of the fourth order shear-parallel
cumulant in Section 5.2.5.

4.3.7. Renormalized RLA Green’s Function

Since the RLA equation (65) for the Green’s function is just a time-
dependent diffusion equation (with Gaussian solution), it can be renor-
malized quite simply in a manner similar to that employed for the exact
renormalization of the shear-transverse Green’s function. The renormalized
RLA Green’s function will be perforce Gaussian and satisfies the time-
dependent diffusion equation:

“ḠRLA

“t
=D̄x(t)

“
2ḠRLA

“x2 +D̄y(t)
“

2ḠRLA

“y2 ,

with ḠRLA |t=0=Ḡ0
x(x) d(y) and where the shear-parallel diffusivity D̄y(t) is

half the derivative of the exact asymptotic shear-parallel mean-square
displacement:

1
2

l2r2 dm0, 2(t/r2)
dt

’ D̄y(t) as t Q .,

and the initial data Ḡ0
x(x) is specified in (94). In particular, the long-time

asymptotics predicted by the RLA for the mean-square shear-parallel
tracer displacement (and the full statistics for the shear-transverse tracer
displacement) are exact. The relationships between the rescaling functions
a, l, and r to give a nontrivial renormalized limit are all correct. But the
RLA prediction that the renormalized Green’s function is Gaussian makes
it correct only:

1. within the D regime (where D̄y(t)=Kg
y is constant), and

2. within the SD-t regime.

The persistent non-Gaussian features of the renormalized Green’s
function within the SD-w and SD-o regimes are completely missed by the
RLA.

5. LONG-TIME BEHAVIOR OF FOURTH ORDER CUMULANTS IN

SOME SPECIAL STEADY MODELS

Our renormalization in Section 4 of the equations furnished by the
closure approximations provided some general insight into their predictions
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for the large-scale, long-time behavior of the Green’s function, or equiva-
lently, the tracer displacement PDF. In particular, we were able to ascer-
tain whether the closure approximations correctly or incorrectly predicted
an asymptotically Gaussian shape for the tracer displacement PDF at long
times. In the present section, we examine the large-scale, long-time predic-
tions of the closure approximations in more quantitative detail for some
special cases of the IS-SFCS model. In particular, we examine the long-
time predictions for the fourth-order cumulants in both the sweeping (x)
and shearing (y) directions through rigorous asymptotic calculations. Our
purpose is to quantify asymptotic departures from Gaussianity or relaxa-
tion to Gaussianity, as appropriate, so as to provide a sharper means of
assessing the accuracy of the closure approximations. Indeed, a Gaussian
PDF has vanishing fourth (and higher) order cumulants, so m0, 4(t) can be
used to represent how far the PDF is from a Gaussian shape. More preci-
sely, we compute the flatness factors (or kurtoses), which are just the ratio
of the fourth order tracer displacment moments to the square of the second
order moments:

˛FX, 4(t) —
OX4(t)P
OX2(t)P2=3+

m4, 0(t)
(m2, 0(t))2 ,

FY, 4(t) —
OY4(t)P
OY2(t)P2=3+

m0, 4(t)
(m0, 2(t))2 ,

(132)

which take the value 3 for a Gaussian, and larger (smaller) values for
PDF’s which have a broader (thinner) than Gaussian shape. By the
moment inequalities, (20) a realizable probability distribution for the tracer
displacement must have FX, 4(t) \ 1 and FY, 4(t) \ 1. If the flatness of the
tracer displacement PDF approaches an asymptotic limit (as it does in
most cases considered here), we denote it by

Fg
X, 4 — lim

t Q .

FX, 4(t), Fg
Y, 4 — lim

t Q .

FY, 4(t). (133)

Since this section concerns the long-time asymptotics of the tracer displa-
cement statistics, we will take the limit t Q . as understood when reporting
asymptotic behavior for m0, 4(t) or m4, 0(t) (through the standard ’ notation).

We consider the following two relatively simple examples:

1. The behavior of the cumulant m4, 0(t) the tracer coordinate X(t),
which responds only to the sweeping velocity field w(t). The presence of
molecular diffusion leads to trivial modifications, so for clarity we set o=0
in this study (Section 5.1).
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2. The behavior of the cumulant m0, 4(t) of the tracer coordinate Y(t)
responding to a steady shear flow with molecular diffusion o > 0 but no
cross sweep w(t)=0 (Section 5.2).

More general situations can be analyzed similarly, though the calcula-
tions already become quite difficult and tedious for the second example.
From these studies, we learn the following:

1. The QLA and RLA always predict Gaussian behavior for X(t)
and Y(t) and therefore miss departures from Gaussianity in the shear flow
with molecular diffusion model.

2. The MDIA performs better than all of the other closure approx-
imations considered, yielding a correct Gaussian behavior in the random
sweeping model and a prediction satisfying 1

2 m0, 4(t) [ mMDIA
0, 4 (t) [ m0, 4(t) for

all times in the steady shear flow with molecular diffusion model.

3. The DIA and QNA both have a tendency to wrongly predict per-
sistently thinner-than-Gaussian PDF’s when the tracer motion is superdif-
fusive in all models considered.

4. The DIA fails miserably in tracking subdiffusive tracer motion,
even yielding unrealizable predictions.

5. The DIA is in some ways worse than the QNA for the first
example, but does yield some improvements for the steady shear flow with
molecular diffusion model.

We only report and discuss the results in the main text. The details
behind the rigorous asymptotic calculations may be found in Appendix D.

5.1. Sweeping Motion

We consider first the long-time statistics of the displacement X(t) of
the tracer in the x direction induced by the sweeping velocity component
w(t). For simplicity, we take o=0; molecular diffusion changes the results
in trivial ways. The structure of the shear flow v(x, t) is irrelevant.

All closure approximations agree with the exact formulas for all
cumulants through third order (see Section 3), of which only the second
order cumulant m2, 0(t) is nontrivial. The long-time asymptotics for all
models then of course agree with the exact result (87). The QLA, RLA, and
MDIA all correctly predict that the PDF for X(t) is Gaussian, and that
therefore all cumulants ma, 0(t) with a ] 2 vanish. The DIA and QNA,
however, incorrectly predict nonzero values for m4, 0(t), and we now
examine the long time asymptotics of these predictions in some detail.
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5.1.1. QNA Predictions for Long-Time Asymptotics

mQNA
4, 0 (t) ’ ˛12KÄ

x
2 12(C(b+1))2

C(2b+3)
− 12 t2b+2 for − 1 < b < 1,

3K°x for b < − 1.

These asymptotics imply that the QNA prediction for the tracer PDF has
the following asymptotic flatness factor:

Fg, QNA
X, 4 =˛6(C(b+2))2

C(2b+3)
for − 1 < b < 1,

6 for b < − 1.

The graph of this asymptotic flatness factor is presented in Fig. 7, along
with the horizontal line corresponding to the correct value of 3 corre-
sponding to the Gaussian statistics in our IS-SFCS model. We see that the
QNA prediction for the flatness decreases with the infrared scaling expo-
nent b, crossing the Gaussian value 3 at b=0. The QNA is a realizable

–3 –2.5 –2 –1.5 –1 –0.5 0 0.5 1
0

1

2

3

4

5

6
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8

β

F
X,4
*

Asymptotic Flatness Factor for X(t)

Fig. 7. Asymptotic flatness factors Fg
X, 4 for X(t) predicted by QNA (circles: ‘‘n’’) and DIA

(crosses: ‘‘×’’). Correct value 3 of flatness factor is indicated by the horizontal line of stars ‘‘f.’’

Closure Approximations: A Comparative Study 627



approximation for the case Rw(t)=wge−c |t| belonging to the class b=0, in
that it exactly describes the tracer motion when the sweeping field w(t) is a
dichotomous Markov process jumping back and forth between the values
± wg. (21) Though this underlying sweeping process is non-Gaussian, it pro-
duces Gaussian statistics for the tracer displacement at long times because
of the central limit theorem. As b Q 1 and the correlations in the random
sweeping becomes long-ranged, the QNA prediction for the flatness of the
tracer PDF approaches the value 1, consistent with its prediction for the
case of a random steady sweep (viewed as an extreme limit of a randomly
fluctuating sweep with long-range temporal correlations) (see Section 3.1).
In the trapping regime b < − 1, the QNA predicts a flatness of 6, consistent
with the prediction of an exponentially distributed PDF at long times in
this regime (Section 4.2.2).

5.1.2. DIA Predictions for Long-Time Asymptotics

mDIA
4, 0 (t) ’ ˛ 12KÄ

x
2

(1+b)(1+2b)
1 (C(b+1))2

C(2b+1)
− 12 t2b+2 for −

1
2

< b < 1,

− 24 1F
.

0
ds 1F

s

0
dsŒ Rw(sŒ)2

22 t for b < −
1
2

.

These asymptotics imply that the DIA prediction for the tracer PDF has
the following asymptotic flatness factor:

Fg, DIA
X, 4 =3 1C(b+2) C(b+1)

C(2b+2)
+

b

2b+1
2 for −

1
2

< b < 1.

For b < − 1
2 , the flatness of the PDF diverges to large negative numbers at

long times. This is of course a nonsensical prediction. Indeed, the flatness
of any PDF must be greater than or equal to one by elementary moment
inequalities. (20) The DIA violates this criterion for all b < − 0.3378, which
includes part of the subdiffusive regime and all of the trapping regime.
Therefore the DIA is certainly not realizable for a random sweeping
model with power spectrum having infrared scaling exponent b < − 0.3378
in that there is no statistical model for the random sweeping which would
give results in agreement with the DIA prediction. For b=0, the DIA
predicts the correct Gaussian value of 3 for the flatness. For all other
values of b, the DIA predicts subdiffusive behavior, with the b Q 1 limit
consistently approaching its prediction of Fg, DIA

Y, 4 =2 for a steady random
sweep. (21)
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5.2. Steady Random Shear Flow with Molecular Diffusion

The second example we consider is a steady shear flow with no cross
sweep:

v(x, y, t)=1 0
v(x)

2 ,

but with active molecular diffusion o > 0. Unlike the previous examples,
the exact long-time asymptotics of the tracer displacement can be Gaussian
or non-Gaussian, depending on the infrared scaling parameter e of the
energy spectrum Ē(k) (75), as we shall describe in Section 5.2.1.

All approximations correctly predict the mean-square displacement
m0, 2(t), which has the long-time asymptotics (2, 49):

m0, 2(t) ’ ˛2Kg
y t for e < 0,

4
2+e

KÄ

2 t1+e/2 for 0 < e < 2.
(134)

The scaling constants are given by:

˛Kg
y =o+2 F

.

0

Ē(q)
oq2 dq

KÄ

2 =−C 1 −
e

2
2 AEo−(2 − e)/2.

The comparison of the predictions of their closure predictions will focus on
the fourth order statistics of Y(t) through the quantitites m0, 4(t) and FY, 4(t)
(132). The QLA and RLA, which always predict Gaussian statistics for
Y(t) are discussed first in Section 5.2.2.

In subsequent subsections, we discuss the predictions made by the QNA
(Section 5.2.3), the DIA (Section 5.2.4), and the MDIA (Section 5.2.5). Our
findings may be summarized as follows:

1. All closure approximations correctly predict an asymptotically
Gaussian PDF in the D (homogenization) regime e < 0, though they
disagree with the exact result in certain details concerning the approach to
Gaussianity.

2. The asymptotic flatnesses predicted by the closure approximations
in the superdiffusive regime 0 < e < 2 are presented in Fig. 8. The MDIA
is the only closure approximation which even qualitatively agrees with the
exact results, in that the tracer displacement becomes Gaussian in the limits
e Q 0 and e Q 2, and is super-Gaussian for 0 < e < 2.
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Fig. 8. Asymptotic flatness FÄ

4 predicted for tracer displacement Y(t) along a steady shear
flow when molecular diffusion is present o > 0 but no cross sweep w(t)=0. Exact: stars ‘‘f,’’
QNA: circles ‘‘n,’’ QLA and RLA: dots ‘‘·,’’ DIA: crosses ‘‘×,’’ MDIA: pluses ‘‘+.’’

3. The MDIA prediction is always within a factor of 2 of the exact
result for m0, 4(t), and consequently, MDIA predicts the correct scaling
exponents and phase transition values, including the rates of approach to
Gaussianity in the D (homogenization) regime.

4. The DIA and QNA, on the other hand, make a number of inac-
curate predictions, with DIA offering some minor improvements over the
QNA. Both err qualitatively for sufficiently large values of e (sufficiently
strong superdiffusive motion) by predicting the tracer displacement to be
thinner than Gaussian.

The rigorous derivations of the results presented here may be found in
Appendix D.

5.2.1. Exact Results for Long-Time Asymptotics

m0, 4(t) ’ ˛Kg
4 t3/2 for e < − 1

2 ,

KÄ

4 t2+e for − 1
2 < e < 2,
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The scaling constants are given by:

˛Kg
4 =

128 `p

o5/2
F

.

0
(Ē(q))2 q−4 dq,

KÄ

4 =
384A2

E

o2 − eC(3+e)
F

.

0
F

.

0
I(q, qŒ) dq − dq,

(135)

where

I(q, qŒ)=
(qq −)3 − e

(1+q2)(1+(q − q −)2)(1+(q+q −)2)(1+q2+q −2)
1 1

1+q2+
1

1+q −2
2 .

(136)

Note that the phase transition for m0, 4(t) occurs at a different place
(e=− 1

2 ) than the phase transition for m0, 2(t). Nonetheless, the transition
from homogenizing to persistent non-Gaussian behavior is identical with
the transition (e=0) from diffusive to superdiffusive behavior:

FY, 4(t)=˛3+Kg
Ft−1/2+o(t−1/2) for e < − 1

2 ,

3+K•
Ft e+o(te) for − 1

2 < e < 0,

FÄ

4 +o(1) for 0 < e < 2,

where:

˛Kg
F=

Kg
4

4(Kg
y )2 ,

K•
F=

KÄ

4

4(Kg
y )2 ,

FÄ

4 =3+
(2+e)2 KÄ

4

16(KÄ

2 )2 .

The result for the superdiffusive regime could alternatively be derived by
computations beginning with the renormalized Green’s function in ref. 6.

An asymptotic calculation shows that

˛FÄ

4 =3+GÄ

4 e2+O(e3) as e Q 0,

FÄ

4 =3+o(1) as e Q 2,

where

GÄ

4 % 4.7. (137)
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That is, the limits as e Q 0 and e Q 2 are Gaussian. The reason is that as
e Q 2, the shear becomes so strong that the transverse fluctuations due to
molecular diffusion become negligible, and the tracer is moving effectively
according to a (steady) random sweep along its shear streamline. The e Q 0
limit is a transition to the homogenization regime.

5.2.2. QLA and RLA Predictions

The fourth order cumulant is predicted to be zero by the QLA, since
the QLA always predicts a Gaussian PDF for Y(t). The QLA therefore
completely misses the persistent non-Gaussianity of the shear-parallel
tracer displacement in the superdiffusive regime (e > 0), in addition to finite
time departures from Gaussianity which exist for all e. If the molecular
diffusion is represented as a Gaussian white noise random sweeping veloc-
ity field w(t), then the RLA, like the QLA, always predicts a Gaussian
PDF for Y(t).

5.2.3. QNA Predictions for Long-Time Asymptotics

mQNA
0, 4 (t) ’ ˛Kg, QNA

4 t for e < − 2,

K•, QNA
4 t2+e/2 for − 2 < e < 0,

KÄ, QNA
4 t2+e for 0 < e < 2,

The scaling coefficients are given by:

˛Kg, QNA
4 =−96o−3 1F

.

0
Ē(q) q−2 dq21F

.

0
Ē(q) q−4 dq2 ,

K•, QNA
4 =24AEeC(−(4+e)/2) o (e − 4)/2 F

.

0
Ē(q) q−2 dq,

KÄ, QNA
4 =12A2

Eo e − 2(C(−(2+e)/2))2 12(C((4+e)/2))2

C(e+3)
− 12 .

All these scaling coefficients are negative, because Ē(q) is a non-negative
function.

The long-time behavior of the flatness, as predicted by QNA, is as
follows:

FQNA
Y, 4 (t)=˛3+Kg, QNA

F t−1+o(t−1) for e < − 2,

3+K•, QNA
F t e/2+o(te/2) for − 2 < e < 0,

KÄ, QNA
F +o(1) for 0 < e < 2,
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where:

˛Kg, QNA
F =

Kg, QNA
4

4(Kg
y )2 < 0,

K•, QNA
F =

K•, QNA
4

4(Kg
y )2 < 0,

KÄ, QNA
F =3+

(2+e)2 KÄ, QNA
4

16(KÄ

2 )2 =6
(C((e+4)/2))2

C(e+3)
.

A plot of KÄ, QNA
F as a function of e is shown in Fig. 8. Asymptotic calcula-

tions show that

˛KÄ, QNA
F =3 − 3

2 e+O(e2) as e Q 0,

KÄ, QNA
F =1+o(1) as e Q 2.

The limit as e Q 2 gives the flatness associated to the QNA approximation
for a tracer just moving steadily (but with a random velocity) with a con-
stant random velocity (27), because the long range correlations are so
strong that the molecular diffusion induces negligible decorrelation of the
velocity of the tracer along the shearing direction.

We see that the QNA predictions differ from the exact results in the
following ways:

1. There are three rather than two phases of long-time behavior of
m0, 4(t), and the phase transition values are incorrect.

2. The long-time scaling exponent for m0, 4(t) is incorrect for all e < 0.
3. The scaling coefficients of mQNA

0, 4 (t) are negative, whereas m0, 4(t)
should be positive for all time according to the exact formula.

5.2.4. DIA Predictions for Long-Time Asymptotics

mDIA
0, 4 (t) ’ ˛Kg, DIA

4 t3/2 for e < − 1,

o(t2+e/2) for − 1 < e < 0,

KÄ, DIA
4 t2+e for 0 < e < 2

where the scaling coefficients are given by:

˛Kg, DIA
4 =64 `p o−5/2 F

.

0
(Ē(q))2 q−4 dq,

KÄ, DIA
4 =

24A2
Eo e − 2

C(e+3)
1Ce+F

R
2

|qqŒ|1 − e

(1+q2)2 (1+(q+qŒ)2)
dqŒ dq2 .

Closure Approximations: A Comparative Study 633



where

Ce=C(−(2+e)/2)2 (C((4+e)/2)2 − 1
2 C(e+3)).

At e=−1 and e=0, logarithms enter. The precise asymptotics predicted
by DIA are not reported for − 1 < e < 0 because they cannot be expressed
simply in terms of an integral expression or the leading order asymptotics
of Ē(k) at low wavenumber.

The long-time asymptotics of the flatness factor are given by:

F4(t)=˛3+Kg, DIA
F t−1

2+o(t−1
2) for e < − 1,

3+o(te/2) for − 1
2 < e < 0,

FÄ, DIA
4 +o(1) for 0 < e < 2,

where:

˛Kg, DIA
F =

Kg, DIA
4

4(Kg
y )2 > 0,

FÄ, DIA
4 =3+

(2+e)2 KÄ, DIA
4

16(KÄ

2 )2 .

A plot of FÄ, DIA
4 as a function of e is shown in Fig. 8. Direct asymptotic

calculations indicate that:

˛FÄ, DIA
4 =3+GÄ, DIA

4 e2+O(e3) as e Q 0,

FÄ, DIA
4 =2+o(1) as e Q 2,

where

GÄ, DIA
4 % 1.1.

The limit as e Q 2 gives the flatness associated to the DIA approximation
for a tracer just moving steadily (but with a random velocity) along a single
streamline of the shear flow. (21)

We see therefore that the DIA does improve upon the QNA predic-
tions in several ways for the present model:

1. The scaling exponent for m0, 4(t) is correctly predicted by DIA for
all e except − 1 < e < 0.

2. The PDF for Y(t) is correctly predicted to be slightly broader-than-
Gaussian for e < − 1 at large but finite times, asymptotically approaching a
Gaussian distribution.
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3. For small positive values of e, the DIA correctly predicts the
tracer displacement PDF to be slightly broader-than-Gaussian. The flatness
is, however, quantitatively underpredicted because GÄ, DIA

4 is about a factor
of 1/4 too small (see Eq. (137)).

4. For larger values of e, the DIA, like the QNA, wrongly predicts a
thinner-than-Gaussian PDF for Y(t), but the underprediction is somewhat
less pronounced.

5.2.5. MDIA Predictions for Long-Time Asymptotics

An interesting general fact, resulting from a close similarity between
the exact and MDIA finite time formulas for m0, 4(t) (Appendix D.2.2) is
that for all times:

1
2 m0, 4(t) [ mMDIA

0, 4 (t) [ m0, 4(t).

The long time asymptotics for m0, 4(t) are consequently correct except for
the scaling constants:

mMDIA
0, 4 (t) ’ ˛Kg, MDIA

4 t3/2 for e < − 1
2 ,

KÄ, MDIA
4 t2+e for − 1

2 < e < 2,

where:

˛Kg, MDIA
4 =

64
o5/2 F

.

0
(Ē(q))2 q−4 dq=

1
2

Kg
4 ,

KÄ, MDIA
4 =

384A2
E

o2 − eC(3+e)
F

.

0
F

.

0
IMDIA(q, qŒ) dqŒ dq.

Here

IMDIA(q, qŒ)=
(qq −)3 − e

(1+q2)(1+(q − q −)2)(1+(q+q −)2)(1+q2+q −2)
1

1+q2 .

(138)

The flatness of the shear-parallel tracer displacement at long times also
obeys the exact laws up to differences in scaling constants:

F4(t)=˛3+Kg, MDIA
F t−1/2+o(t−1/2) for e < − 1

2 ,

3+K•, MDIA
F t e+o(te) for − 1

2 < e < 0,

FÄ, MDIA
4 +o(1) for 0 < e < 2,
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where:

˛Kg, MDIA
F =

Kg, MDIA
4

4(Kg
y )2 =

1
2

Kg
F,

K•, MDIA
F =

KÄ, MDIA
4

4(Kg
y )2 ,

FÄ, MDIA
4 =3+

(2+e)2 KÄ, MDIA
4

16(KÄ

2 )2 .

Asymptotic calculations show that

˛FÄ, MDIA
4 =3+GÄ, MDIA

4 e2+O(e3) as e Q 0,

FÄ, MDIA
4 =3+o(1) as e Q 2,

where

GÄ, MDIA
4 =3(p2+4)/16 % 2.6

The MDIA alone, of all closure approximations considered in this work,
correctly predicts the phase transition values, scaling exponents, and (posi-
tive) sign of the long time asymptotics of m0, 4(t). A quantitative comparison
between the exact and MDIA formulas for the asymptotic flatness of the
tracer displacement PDF in the superdiffusive regime is plotted in Fig. 8.

6. CONCLUSION

We have assessed the value of several standard closure approximations
by testing their predictions on an exactly solvable model flow. The shear
flow with cross sweep model which we considered is particularly well suited
to this task. While it has some special features (Gaussian statistics and
shear flow geometry), these are relatively natural and allow us to make a
precise study of flows with widely varying and qualitatively different spatio-
temporal statistical properties, such as rapid decorrelation in space and/or
time, strong positive long-range correlations, and strong negative long-
range correlations (which are associated with flows with an oscillatory
character). We can infer from our model what kind of statistical features
may cause difficulties for the various closure approximations.

When applied to these simple shear flows, we have found the MDIA
to be the most successful closure approximation considered. The MDIA
always predicts the correct second order moments for the tracer displace-
ment in the model considered in this paper, and correctly describes the
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phase diagram for the large-scale, long-time statistics of the mean passive
scalar density. It is the only approximation which makes qualitatively
correct predictions for the higher-order statistics of the tracer displacement
along the shear over all regimes of parameters in the IS-SFCS model, and
it produces the exact equation for a wider range of situations than any of
the other closure approximations considered.

The other closure approximations suffer serious qualitative deficiencies
in at least certain subcases of the model considered. The QLA and QNA
completely miss the nonlinear coupling of a fluctuating cross sweep velocity
and the shear velocity. And in some simple cases where only one of these
velocity components is present, the QLA cannot predict non-Gaussian fea-
tures of the tracer displacement, even at long times, while the QNA pre-
dicts spurious persistent departures from Gaussianity in some simple cases.

The DIA does account for the nonlinear coupling between the sweep-
ing velocity and the shear velocity, and can therefore predict the correct
shape of the phase diagram demarcating qualitatively different long-time
behaviors in the IS-SFCS model. Whenever we have been able to compute
explicitly the second order moments of the tracer displacement in the the
SFCS model, they have agreed with the exact results. However, even in the
relatively simple setting of the SFCS model with a nonzero randomly fluc-
tuating random sweep w, the DIA equation for the second order moment
of the tracer displacement is a nonlinear integral equation which is difficult
to solve. The exact formulas for these second order moments are much
easier to obtain than their DIA approximations! Moreover, the DIA pre-
dictions for the higher order moments of the tracer displacement in non-
diffusive regimes suffer from serious qualitative defects. The most dramatic
failure of the DIA in this paper is for the random sweeping motion (Sec-
tion 5.1.2), wherein the DIA predicts unrealizable values for the fourth
order moment of the tracer displacement when the sweeping velocity has its
energy spectrum vanishing sufficiently rapidly at low frequencies. The DIA
also predicts a qualitatively incorrect thinner-than-Gaussian PDF for the
tracer displacement along a steady shear flow when there is sufficiently
strong concentration of energy at low wavenumbers (e large). Therefore,
the DIA does not seem to be even qualitatively reliable for predicting the
long-term properties of the higher-order statistics of tracer motion in our
model for any situation in which there are departures from Gaussianity.

The nonlinearity in the RLA is in some ways milder than that of the
MDIA and DIA, and the resulting equations for the passive scalar statistics
are easier to analyze. Like the MDIA, the RLA always predicts the correct
second order moments for the tracer displacement in the model considered
in this paper, and correctly describes the phase diagram for the large-scale,
long-time statistics of the mean passive scalar density. However, like the

Closure Approximations: A Comparative Study 637



QLA, the RLA always predicts a Gaussian PDF for the tracer displace-
ment, and therefore does not properly represent the higher order statistics
when they deviate from Gaussianity. The RLA, therefore, can be viewed as
a closure approximation which is not as accurate as the MDIA but is, on
the other hand, considerably simpler to work with. For this reason the
RLA might constitute the best alternative for more complex situations
where the QLA fails but the MDIA is too complicated to analyze.

APPENDIX A. FORMAL DERIVATION OF CLOSURE

APPROXIMATIONS

In this appendix we present a unified format for deriving the closure
approximations used in main text. These approximations were originally
derived using different approaches (10, 13, 32, 33, 64) and the formal approach
presented here does not reveal much of the intuition which guided their
development. The purpose of this appendix is simply to provide a system-
atic and self-contained (though non-rigorous) way of obtaining the closure
approximations, and to show that each may be viewed as some sort of
fairly natural attempt to partially resum a badly behaved perturbation
series.

Each of the closure approximations we consider can be viewed as a
particular simplification of the formal master equation obtained within the
Zwanzig–Mori formalism. (55, 76, 77) To stress these aspects apart from par-
ticular details of the physical system under study, we will formulate them in
this appendix for general random linear evolution (Liouville) equations:

“

“t
f(t)=[L(t)+l l(t)] f(t), f|t=0=f0. (139)

The evolution operator has been expressed as a sum of a mean component
L(t) and a randomly fluctuating component ll(t) of zero mean with respect
to a projection operator O ·P. The scalar l is introduced as an ordering
parameter for constructing perturbation approximations, and will be set to
unity at the end. For the advection-diffusion equation for the SFCS model
considered in the main text, the operators take the form,

L(t)=oD, ll(t)=−w(t)
“

“x
− v(x, t)

“

“y
, (140)

and the projection O ·P is the expectation with respect to the statistics of the
velocity, though the method presented below apply to arbitrary L(t), l(t),
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and O ·P. Instead of f, it is convenient to work with the evolution operator
h(t | tŒ), which satisfies:

“

“t
h(t | tŒ)=[L(t)+l l(t)] h(t | tŒ), h(t | t)=I, (141)

with I representing the identity operator. Closure amounts to deriving
an equation for H(t | tŒ)=Oh(t | tŒ)P from Eq. (141) because the averaged
Green’s function is related to this averaged evolution operator by

G(r − rŒ, t − tŒ)=H(t | tŒ) d(r − rŒ), (142)

where we assumed statistical homogeneity in space and time of l(t).
The equation (141) can be written equivalently as the integral equation

h(t | tŒ)=H0(t | tŒ)+l F
t

tŒ
ds H0(t | s) l(s) h(s | tŒ). (143)

where H0(t | tŒ) is the evolution operator under the mean operator L(t) alone,

“

“t
H0(t | tŒ)=L(t) H0(t | tŒ), H0(t | t)=I, (144)

and H0 will be considered to be available in suitably explicit form, as is true for
the example (140) considered in the paper. Upon iterating and averaging,
Eq. (143) leads to the following infinite perturbation series expansion for H(t | tŒ):

H(t | tŒ)=H0(t | tŒ)+ C
.

n=2
lnHn(t | tŒ), (145)

where

Hn(t | tŒ)=F
t

tŒ
ds1 F

s1

tŒ
ds2 · · · F

sn−1

tŒ
dsn

×H0(t | s1)Ol(s1) H0(s1 | s2) · · · l(sn−1) H0(sn − 1 | sn) l(sn)P H0(sn | tŒ).
(146)

Truncation of Eq. (145) at any order yields an approximation for H(t | tŒ)
only valid on a short time interval.

Improvement is obtained by partial resummation (or renormaliza-
tion) (38, 68, 69) of the series (145). This can be achieved starting from the
formal equation for H obtained within the Zwanzig–Mori formalism which
leads a closed, exact but formal equation for H which can be cast into
either one of the following two equivalent forms:
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“

“t
H(t | tŒ)=L(t) H(t | tŒ)+l2 F

t

tŒ
Q(t, s) H(s | tŒ) ds. (147)

“

“t
H(t | tŒ)=L(t) H(t | tŒ)+l2P(t, tŒ) H(t | tŒ). (148)

Within Zwanzig–Mori formalism, the operators P and Q are usually given
in terms of formal expressions which involve (time-ordered) exponentials of
the projection operator O ·P and can be explicitly evaluated only in some
simple cases. The only way to give a meaning to those expression is to
expand them, so we only give the corresponding (formal) series expansions
for P and Q. All the closure approximation given below are obtained by
truncation (possibly after resummation) of these series. For Q we obtain

l2Q(t | tŒ)= C
.

n=2
lnQn(t | tŒ), (149)

with

˛Q2(t | tŒ)=Ol(t) H0(t | tŒ) l(tŒ)P

Qn+2(t | tŒ)=F
t

tŒ
dsn · · · F

t

s2

ds1

×Ol(t) H0(t | s1)[l(s1) H0(s1 | s2) · · · [l(sn) H0(sn | tŒ) l(tŒ)] · · · ]P

(150)

For P we obtain

l2P(t | tŒ)= C
.

n=2
lnPn(t | tŒ), (151)

with

˛
P2(t | tŒ)=F

t

tŒ
dsOl(t) H0(t | s) l(s)P H−1

0 (t | s)

P3(t | tŒ)=F
t

tŒ
ds1 F

s1

tŒ
ds2Ol(t) H0(t | s1) l(s1) H0(s1 | s2) l(s2)P H−1

0 (t | s2)

Pn+3(t | tŒ)=− C
n+1

p=2
Pp(t | tŒ) Hn+3 − p(t | tŒ)

+F
t

tŒ
ds1 F

s1

tŒ
ds2 · · · F

sn+1

tŒ
dsn+2

×Ol(t) H0(t | s1) l(s1) · · · H0(sn+1 | sn+2) l(sn+2)P H−1
0 (t | sn+2)

(152)
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Here H−1
0 is the inverse of H0 (i.e., H0H−1

0 =H−1
0 H0=I). Expansion (151)

is the so-called time-ordered cumulant expansion. (68, 69)

The series (149) and (151) are derived next. After that we will use the
equations (147) and (148) to guide a partial resummation of the series (145)
through appropriate approximations for Q(t, tŒ) and P(t, tŒ). The QNA
and the DIA are obtained from such approximations for Q, while the
QLA, MDIA, and RLA are obtained from such approximations for P.

Derivation of Eqs. (147) and (148). We first obtain the series
expansion for Q. Decompose h into its mean component H and fluctuating
component lh̃:

h(t | tŒ)=H(t | tŒ)+lh̃(t | tŒ), Oh̃P=0. (153)

From (141) H and h̃ satisfy

˛ “

“t
H=L(t) H+l2Ol(t) h̃P,

“

“t
h̃=L(t) h̃+l(t) H+l[l(t) h̃],

(154)

where here and below [ · ] denotes the projector orthogonal to O ·P, i.e.,
[g]=g −OgP. Using h̃(tŒ | tŒ)=0, the second equation in (154) is equiva-
lent to the integral equation

h̃(t | tŒ)=F
t

tŒ
ds H0(t | s) l(s) H(s | tŒ)+l F

t

tŒ
ds H0(t | s)[l(s) h̃(s | tŒ)]. (155)

Iteration of this equation produces a series expansion for h̃ which can be
used to evaluate the term l2Ol(t) h̃P in the first equation in (154). The
expression one obtains can be written as l2 > t

tŒ Q(t, s) H(s | tŒ) ds as in (147)
with Q given by the series in (149) with Qn’s as in (150).

We now obtain the series expansion for P. We rewrite Eq. (148) as

l2P(t | tŒ) H(t | tŒ)=
“

“t
H(t | tŒ) − L(t) H(t | tŒ), (156)

and, using the expansions (145) and (151) for H and P, we expand both
sides of (156) to get
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C
.

n=2
lnPn(t | tŒ) H0(t | tŒ)+ C

.

n=4
ln C

n − 2

p=2
Pp(t | tŒ) Hn − p(t | tŒ)

= C
.

n=2
ln F

t

tŒ
ds1 F

s1

tŒ
ds2 · · · F

sn − 1

tŒ
dsnOl(t) H0(t | s1) · · · l(sn)P H0(sn | tŒ)

(157)

Equating powers of l in both sides we obtain Eq. (152).

A.1. The Quasinormal Approximation (QNA)

Truncation of Eq. (149) at order l2 and use of the result as an
approximation for Q(t, tŒ) in (147) results in the QNA equation (setting
l=1)

“HQNA

“t
=L(t) HQNA+F

t

tŒ
Ol(t) H0(t | s) l(s)P HQNA(s | tŒ) ds. (158)

Upon applying Eq. (158) to d(r − rŒ) an explicit equation for GQNA is
obtained; for our turbulent diffusion model it is Eq. (23). We note that the
QNA equation (158) may be obtained alternatively under the assumption
that the process {l(t), h(t | tŒ)} is Gaussian, or ‘‘normal,’’ whence its name.

A.2. The Quasilinear Approximation (QLA)

Truncation of Eq. (151) at order l2 and use of the result as an
approximation for P(t, tŒ) in (148) results in the QLA equation (setting
l=1)

“HQLA

“t
=L(t) HQLA+P2(t, tŒ) HQLA. (159)

where P2 is given in (152). The equation for GQLA is obtained by applying
Eq. (159) to d(r − rŒ). For the general case, this operation requires comput-
ing the operator H−1

0 (t | s) H(t | tŒ) which may be a nontrivial endeavor.
For our turbulent diffusion model, it results in (30). For the general case it
should also be stressed that, since tŒ [ s [ t, d(r − rŒ) is expected to belong
to the domain of definition of H−1

0 (t | s) H(t | tŒ). Put differently, the QLA
can be well-posed even though the operator H−1

0 (t | s) may on its own not
be defined on the solution space of interest. To the best of our knowledge,
the QLA is not equivalent to any statistical assumption about the statistics
of {l(t), h(t | tŒ)} analogous to that of the QNA.
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We also note that when L(t) is a first-order differential operator (such
as the case of o=0 in (140)), the expression for P2 in (152) is equivalent to

P2(t, tŒ)=F
t

tŒ
dsOl(t)[H0(t | s) l(s)]P, (160)

where the last H0(t | s) only acts on the l(s) at its direct right. Interestingly,
it is straightforward to show that the operation which consist in cancelling
the inverse operators H−1

0 (t | s) can be done at any order in the series for
P(t, s) (i.e., for any Pn(t, s)). We shall use Eq. (160) subsequently for deriv-
ing the RLA: here, however, we will keep working with the expression for
P2 in (152) since this expression remains valid for general L(t), unlike
Eq. (160).

A.3. The Direct Interaction Approximation (DIA)

Generally, the QNA and the QLA are only valid for all times if
H(t | tŒ) evolves on a time-scale which is much longer than the correlation
time of l(t); i.e., if the Kubo number is small. (68, 69) One may hope to
improve these approximations in more general situations by reworking the
series for Q(t, tŒ) or P(t, tŒ) in terms of H(t | tŒ) rather than H0(t | tŒ), since
this operation achieves a further resummation of the original series (145).
In the case of Q(t, tŒ), this gives

l2Q(t, tŒ)=l2Q̄2(t, tŒ)+l3Q̄3(t, tŒ)+ · · · , (161)

where up to order l2

Q̄2(t, tŒ)=Ol(t) H(t | s) l(s)P. (162)

Truncation of Eq. (161) at order l2 is the DIA, i.e., this approximation
leads to the following equation for H(t | tŒ) (for l=1):

“HDIA

“t
=L(t) HDIA+F

t

tŒ
Ol(t) HDIA(t | s) l(s)P HDIA(s | tŒ) ds. (163)

For our turbulent diffusion model, the explicit equation for GDIA which
is obtained by applying Eq. (163) to d(r − rŒ) is given in (38). The DIA
may alternatively be derived as the exact equation associated to a modified
version of the original equation (141)—the so-called random coupling
model (34)—which is obtained by further randomizing Eq. (141) via the
introduction of appropriate random phase coefficients in front of the
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l(t) h(t | tŒ) term. This guarantees that the DIA is realizable in a weak sense,
meaning that it produces a prediction GDIA that is indeed the exact average
solution to some underlying random evolution model, and therefore has
certain statistical consistency properties. However, we shall see by an
explicit example in Section 5 that when applied to turbulent diffusion
models, where the solution should always be non-negative because G is a
PDF, the DIA equation can produce solutions GDIA which do become
negative over certain space-time regions. Therefore, the DIA is not realiz-
able in the strong sense (58) that its prediction GDIA for a turbulent diffusion
model corresponds to the exact Green’s function for some other underlying
turbulent diffusion model, and therefore inconsistent statistical properties
of the tracer motion can be predicted.

A.4. The Modified Direct Interaction Approximation (MDIA)

The MDIA is derived by reworking the series for P(t, tŒ) in terms of
H(t | tŒ) rather than H0(t | tŒ), in a manner parallel to the DIA derivation
given above. We obtain

l2P(t, tŒ)=l2P̄2(t, tŒ)+l3P̄3(t, tŒ)+ · · · , (164)

where up to order l2

P̄2(t, tŒ)=F
t

tŒ
Ol(t) H(t | s) l(s)P H−1(t | s) ds. (165)

In (165), the operator H−1 is the inverse of H. Truncation of Eq. (164) at
order l2 produces the MDIA equation for H (for l=1):

“HMDIA

“t
=L(t) HMDIA+PMDIA

2 (t, tŒ) HMDIA, (166)

where

PMDIA
2 (t, tŒ)=F

t

tŒ
Ol(t) HMDIA(t | s) l(s)P H−1

MDIA(t | s) ds. (167)

Thea application of Eq. (166) to d(r − rŒ) gives Eq. (51) for our turbulent
diffusion model. For the general case the explicit realization of the MDIA
equation may be even more complicated than for the QLA since it now
requires computing the operator H−1

MDIA(t | s) HMDIA(t | tŒ). However, as
with the QLA, the MDIA is expected to be a well-posed approximation
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since, with tŒ [ s [ t, d(r − rŒ) should belong to the domain of definition of
H−1

MDIA(t | s) HMDIA(t | tŒ). We did not find any statistical assumption on
{l(t), h(t | tŒ)} which leads to the MDIA, nor did we obtain any modified
version of Eq. (141) for which the MDIA would be exact. The MDIA,
however, does have some features which are superior to the DIA, as shown
in ref. 71 and by its performance on the turbulent diffusion models dis-
cussed in the text.

A.5. The Renormalized Lagrangian Approximation (RLA)

Here we rework the series for P(t, tŒ) as a series in H(t | tŒ) rather than
H0(t | tŒ), as for the MDIA, but use expression (160) instead of the one in
Eq. (151) for P2(t, tŒ) (and similarly if higher order terms were to be con-
cerned). As stated there, this is only legitimate for evolution operators with
first-order spatial derivatives. This procedure leads to

l2P(t, tŒ)=l2P̆2(t, tŒ)+l3P̆3(t, tŒ)+ · · · , (168)

where up to order l2

P̆2(t, tŒ)=F
t

tŒ
Ol(t)[H(t | s) l(s)]P ds, (169)

where H(t | tŒ) only acts on the l(t) at its direct right. Truncation of
Eq. (168) at order l2 gives the RLA (for l=1):

“HRLA

“t
=L(t) HRLA+PRLA

2 (t, tŒ) HRLA, (170)

where

PRLA
2 (t, tŒ)=F

t

tŒ
Ol(t)[HRLA(t | s) l(s)]P ds. (171)

The application of Eq. (170) to d(r − rŒ) gives Eq. (65) for the turbulent
diffusion model with o=0. Notice that the RLA equation has a rather
simple nonlinearity and will usually be much simpler to write down than
the MDIA (or even the QLA) equations since no inverse operator like
H−1

MDIA(t | s) or H−1
0 (t | s) is involved. The RLA can be easily extended to

turbulent diffusion situations with molecular diffusion by representing the
latter as an additional white-noise random sweep, thereby transforming
the parabolic advection-diffusion equation into a first-order pure advection
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PDE. We did not find any statistical assumption on {l(t), h(t | tŒ)} which
leads to the RLA, nor did we obtain any modified version of Eq. (141) for
which the RLA would be exact.

APPENDIX B. PROOF OF PROPOSITION 1

We provide here the proof of Proposition 1 in Section 2.3. The state-
ment concerning ma, b(t) for a or b odd follows by noting that Ĝ(k, p, t) is
even in k and p.

To compute m2m, 2(t) (both for m=0 and m \ 1), we expand the
argument in the functional average representation (15) for Ĝ(k, p, t) as a
Taylor series in p:

Ĝ(k, p, t)=Oe−ikX(t)(1 − op2t − 1
2 p2M(t)+O(p4))Pw, Wx

=Oe−ikX(t)Pw, Wx
(1 − op2t − 1

2 p2M̄(t)+O(p4)).

where

˛M(t)=F
t

0
F

t

0
F

R
E(q, s − sŒ) e iq(X(s) − X(sŒ)) dq dsŒ ds

M̄(t)=F
t

0
F

t

0
F

R
E(q, s − sŒ)

Oe iq(X(s) − X(sŒ)) − ikX(t)Pw, Wx

Oe−ikX(t)Pw, Wx

dq dsŒ ds.

The generating function, r=ln Ĝ, for the cumulants can therefore be
Taylor expanded about p=0 as follows:

r(k, p, t)=ln Oe−ikX(t)Pw, Wx
− op2t − 1

2 p2M̄(t)+O(p4) (172)

On the other, using the fact that X(t) is a Gaussian process, we have

M̄(t)=F
t

0
F

t

0
F

R
E(q, s − sŒ) e−1

2 q2m0, 2(s − sŒ)+kqMx(t, 0; s, sŒ) dq dsŒ ds,

where we defined

Mx(t1, t2; t3, t4)=O(X(t1) − X(t2))(X(t3) − X(t4))P.

This auxiliary function may be computed easily to give formula (20) stated
in the proposition. Now evaluating the requisite derivatives of Eq. (172),
we deduce the formulas m2m, 2(t) with m \ 0 stated in the proposition.
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Finally, we compute m0, 4(t), the fourth order cumulant of the shear-
parallel tracer displacement, by using the following general formula valid
when m0, 1(t)=m0, 3(t)=0 as in the present case:

m0, 4(t)=OY4(t)P− 3OY2(t)P2=OY4(t)P− 3m2
0, 2(t)

From Eq. (15), it follows that

OY4(t)P=3 F
t

0
ds1 F

t

0
ds2 F

t

0
ds3 F

t

0
ds4 F dq dqŒ

× E(q, s1 − s2) E(qŒ, s3 − s4)Oe iq[X(s1) − X(s2)]+iqŒ[X(s3) − X(s4)]Pw, Wx
.

Using the Gaussianity of X(t) to perform the remaining average, we are
left with

OY4(t)P=3 F
t

0
ds1 F

t

0
ds2 F

t

0
ds3 F

t

0
ds4 F

R
2

dq dqŒ

× E(q, s1 − s2) E(qŒ, s3 − s4)

× e−1
2 q2m2, 0(s1 − s2) − 1

2 qŒ2m2, 0(s3 − s4) − qqŒMx(s1, s2; s3, s4)

Substituting this result into the above equation for m0, 4(t), we obtain the
expression in (19).

APPENDIX C. RENORMALIZATION OF CLOSURE

APPROXIMATIONS

We collect here those derivations of the renormalized equations for the
closure approximations which were too lengthy too include in Section 4. In
Section C.1, we provide some details for the derivation of the renormalized
equations for the shear-transverse Green’s function under QNA and DIA.
Then in Section C.2, we indicate how to derive the full renormalized
Green’s functions for all closure approximations.

C.1. Renormalization of Shear-Transverse Green’s Function

C.1.1. Renormalization of QNA Equation for Shear-Transverse
Green’s Function

The Laplace transform of the shear-transverse Green’s function under
QNA is given by Eq. (24):

G̃x, QNA(k, z)=[z+k2(o+R̃w(z+ok2))]−1.
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The large-scale, long-time rescaling (70) induces the following rescaling
under Laplace transformation:

G̃ (r)
x, QNA(k, z)=r2G̃x, QNA(ak, r2z)

=[z+a2r−2k2(o+R̃w(r2z+a2ok2))]−1.

The renormalization requires the ascertainment of the low z asymptotics of
R̃w(z). This can be computed either by relating it to Ew(w) through the
definition (71) or actually more simply by noting from Eq. (19) that
m̃2, 0(z)=2R̃w(z) z−2 and using the low z asymptotics of m̃2, 0(z) as inferred
from the large t asymptotics of m2, 0(t) from Eqs. (87) and (88). There
results:

R̃w(z) ’ ˛
1
2 K°xz for b < − 1,

C(1+b) KÄ

xz−b for − 1 < b < 1,
(173)

as z Q 0. Working from this in the same as we did for the exact shear-
transverse Green’s function, we find that the relationship between the
rescaling factors a and r2 is the same as for the exact case, and that the
renormalized Laplace transform of the QNA Green’s function is:

G̃̄x, QNA(k, z)=[z+k2zD̃̄x(z))]−1, (174)

provided that b > − 1 or o > 0. The function D̃̄x(z) is just the Laplace
transform of the exact renormalized diffusivity D̄x(t) Eq. (96) across the
shear. Expressed in real time variables, the renormalized equation for the
QNA shear-transverse Green’s function takes the form of the convolutive
diffusion equation (103). The alternative forms for the equation (99) and
(97) for the case of subdiffusive and superdiffusive cross sweeps can be
deduced by analogy to the derivation of the corresponding renormalized
DIA equations, which will be presented in the next subsubsection.

For the trapping regime (o=0 and b < − 1), the renormalized diffu-
sivity vanishes and the renormalized Laplace transform of the QNA
Green’s function is

G̃̄x, QNA(k, z)=[z(1+1
2 K°xk2)]−1.

C.1.2. Renormalization of DIA Equation for Shear-Transverse
Green’s Function

The DIA equation for the shear-transverse Green’s function is not
explicitly solvable for general w(t), so we renormalize the implicit relationship
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for its Laplace transform (Eqs. (39) and (40)). Under the rescaling (70), we
obtain:

G̃ (r)
x, DIA(k, z)=[z+a2r−2k2(o+ÃDIA(ak, 0, r2z))]−1, (175)

where

ÃDIA(ak, 0, r2z)=
1

2pi
F
C

R̃w(z −) G̃x, DIA(ak, r2z − z −) dz −

=F
.

0
e−zr

2tRw(t) Ĝx, DIA(ak, t) dt (176)

To renormalize the shear-transverse DIA Green’s function, we need to
examine the asymptotic limit of Eq. (176) as a Q 0 and r Q 0. The
appearance of the unknown function G̃DIA in this formula creates an extra
complication which was not present in the QNA renormalization. A practi-
cal way to proceed is to posit certain natural limiting behavior for
ÃDIA(ak, 0, r2z), and then check under what conditions those limits give rise
to self-consistent, nontrivial expressions for G̃̄x, DIA(k, z). We show below
that three different limiting behaviors exhaust all possibilities, other than a
phase transition value b=− 1

2 with which we do not concern ourselves.
The lack of an explicit solution for Ĝx, DIA(k, t) also raises the question

of how to specify the initial data for Ĝ̄x, DIA(k, t), since we saw that the
renormalized exact solution can exhibit a discontinuity at t=0. We can
expect, however, that whenever there is persistent evolution of the passive
scalar field to large scales over long times (that is, a Q 0 as r Q 0), then
lim t Q 0 Gx(x, t)=d(x) and lim t Q 0 Ĝ(k, t)=1 so that there is no disconti-
nuity. Indeed, if the solution spreads in time, then under a large-scale, long-
time-rescaling, the solution should appear to shrink to a delta function as
the time approaches its initial value. The only time, therefore, we will be
wary of a discontinuity at t=0 for the renormalized Green’s function is
when there is no evolution of the Green’s function to large scales, i.e., when
the motion is trapped and a=1. As it turns out, the DIA falsely predicts
there is no trapping regime so the issue of discontinuity of Ĝx, DIA(k, t) at
t=0 does not arise; we assume it always connects continuously to the
initial value Ĝx, DIA(k, t=0)=1.

Diffusive Cross-Shear Transport. One obvious possible limit for
Eq. (176) results by just assuming that a and r2 are set equal to zero in the
integrand on the right hand side:

ÃDIA(ak, 0, r2z) Q F
.

0
Rw(t) ĜDIA(0, 0, t) dt=F

.

0
Rw(t) dt (177)
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since ĜDIA(0, 0, t)=1. Setting a=r, this gives rise self-consistently to an
ordinary diffusion equation (93) with correct constant renormalized diffu-
sivity when either b=0, or o > 0 and b [ 0.

Super-Diffusive Cross-Shear Transport. For 0 < b < 1, the
formal limit (177) would be infinity. The self-consistent limit for this case
is:

a2r−2ÃDIA(ak, 0, r2z)=a2 F
C

dz −

2pi
R̃w(r2z −) G̃x, DIA(ak, r2z − r2z −)

’ a2r−2 − 2bC(1+b) KÄ

x F
C

dz −

2pi
z − −bG̃̄x, DIA(k, z − z −)

=a2r−2 − 2b F
C

dz −

2pi
D̃̄ −

x(z −) G̃̄x, DIA(k, z − z −), (178)

where D̃̄ −

x(z) is the Laplace transform of D̄ −

x(t), the derivative of the func-
tion given in (96). (We take the contour C to lie just to the right of the
imaginary axis, so that it is invariant under the rescaling of integration
variables in the first step). Choosing r=a1/(1+b), we then obtain Eq. (98)
after an inverse Laplace transform.

Sub-Diffusive Cross-Shear Transport with −1

2
<b<0. When

o=0 and b < 0, the right hand side of Eq. (177) vanishes. To obtain a
nontrivial rescaled limit for ÃDIA(ak, 0, r2z) when − 1

2 < b < 0, we must
rescale integration variables as in (178), but the limit stated in (178) is not
appropriate when b < 0 because the integrand is not integrable at infinity.
This divergence is treated by a renormalization technique typical in the
theory of generalized functions. (22) It is most straightforward in this regard
to work with the second expression for ÃDIA(ak, 0, r2z) in (176). Using the
fact that

F
.

0
Rw(t) dt=

1
2

F
R

Rw(t) dt=
1
2

Ew(w=0)=0 for b < 0,

we can write

ÃDIA(ak, 0, r2z)=F
.

0
(e−zr

2tĜx, DIA(ak, t) − 1) Rw(t) dt.
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Now we can rescale variables and pass to the large-scale, long-time limit:

a2r−2ÃDIA(ak, 0, r2z)=a2r−4 F
.

0
(e−ztĜx, DIA(ak, t/r2) − 1) Rw(t/r2) dt

’ a2r−4 F
.

0
(e−ztĜ̄x, DIA(k, t) − 1) bKÄ

x(t/r2)b − 1 dt

=a2r−2 − 2b F
.

0
(e−ztĜ̄x, DIA(k, t) − 1) D̄ −

x(t) dt, (179)

where we have inserted the long-time asymptotics of Rw(t): (17)

Rw(t)=F
R

cos(wt) AE, w |w|−b kw(w) dw

’ 21 − b
`p

C((1 − b)/2)
C(b/2)

AE, wtb − 1=bKÄ

xtb − 1, (180)

for b ] 0, −2, −4,... . Choosing r=a1/(1+b), we formally obtain the follow-
ing equation for the renormalized Green’s function:

zG̃̄x, DIA+k2 5F
.

0
(e−ztĜ̄x, DIA(k, t) − 1) D̄ −

x(t) dt6 G̃̄x, DIA=1. (181)

We have to check, however, that this renormalized equation is self-consis-
tently sensible. In particular, it is no longer clear whether the integral con-
verges because the large-scale, long-time renormalized Green’s function
Ĝ̄x, DIA need not be smooth at t=0. Clearly, we must have Ĝ̄x, DIA |t=0=1,
otherwise the integral will diverge at t=0. But the next term in the small
time expansion for Ĝ̄x, DIA must be evaluated to ascertain self-consistent
convergence of the integral, and we obtain this term through calculation of
the large z behavior predicted for G̃̄x, DIA by Eq. (181). We begin by noting
that as z Q .

F
.

0
(e−ztĜ̄x, DIA(k, t) − 1) D̄ −

x(t) dt ’ F
.

0
(e−zt − 1) bKÄ

xtb − 1 dt

=bC(b) KÄ

xz−b

=C(b+1) KÄ

xz−b,
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where we have used the regularized expression, ref. 22, p. 53 for the ana-
lytical continuation of the Gamma function to the left half complex plane.
Substituting this result into Eq. (181), we obtain as z Q .

G̃̄x, DIA(k, z) ’
1

z+C(b+1) KÄ

xk2z−b
’ z−1 − C(b+1) KÄ

xk2z−b − 2+O(z−2b − 3),

which implies (72) that

G̃̄x, DIA(k, t) ’ 1 −
KÄ

x

b+1
k2tb+1,

as t Q 0. So the integral in (181) will be self-consistently convergent when
the expression

(e−zttb − 1) tb − 1

is integrable near t=0, which is true for − 1
2 < b < 0. Note that the equa-

tion (181) is not self-consistent for b < − 1
2 due to divergence of the integral

at t=0 and is not self-consistent for b > 0 due to divergence of the integral
at t=..

Having established the formal self-consistency of Eq. (181) for the
parameter range − 1

2 < b < 0 under consideration, we now show this equa-
tion is equivalent to Eq. (98) by verifying the following Laplace transform
relationship:

F
.

0
e−zt 5F

.

0
D̄ −

x(s)(Ĝ̄x, DIA(k, s) Ĝ̄x, DIA(k, t − s) − Ĝ̄x, DIA(k, t)) ds6 dt

=F
.

0
F

.

0
[(e−zsĜ̄x, DIA(k, s) − 1) D̄ −

x(s) e−z(t − s)Ĝ̄x, DIA(k, t − s)

+D̄ −

x(s)(e−z(t − s)Ĝ̄x, DIA(k, t − s) − e−ztĜ̄x, DIA(k, t))] ds dt

=F
.

0
F

.

0
(e−zsĜ̄x, DIA(k, s) − 1) D̄ −

x(s) e−zuĜ̄x, DIA(k, u) du ds

+F
.

0
D̄ −

x(s) F
.

0
e−z(t − s)Ĝ̄x, DIA(k, t − s) dt ds

− F
.

0
D̄ −

x(s) F
.

0
e−ztĜ̄x, DIA(k, t) dt ds

=5F
.

0
(e−zsĜ̄x, DIA(k, s) − 1) D̄ −

x(s) ds6 G̃̄x, DIA(k, z),
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We have made the change of variables u=t − s in some summands and
used the fact Ĝ̄DIA(k, p, t)=0 for t < 0.

Sub-Diffusive and Trapping Cross-Shear Transport with b<− 1

2
.

When o=0 and b < − 1
2 , the renormalization strategy adopted above did

not produce a self-consistent result, and there is no apparent way of taming
the divergence through further subtraction of terms. Instead a quite differ-
ent renormalization strategy will produce a self-consistent solution.

Consider a Taylor expansion of ÃDIA(ak, 0, r2z) for small a:

ÃDIA(ak, 0, r2z)

=F
.

0
e−zr

2t(Ĝ (0)
x, DIA(t)+akĜ (1)

x, DIA(t)+1
2 a2k2Ĝ (2)

x, DIA(t)) Rw(t) dt+o(a2).
(182)

where Ĝ (1)
x, DIA(t)=“

nG̃x, DIA(k, t)/“kn|k=0 are the the Taylor coefficients of
the expasion of G̃x, DIA(k, t). Using Eq. (39) with p=0, they may be repre-
sented in terms of Laplace transforms as follows:

˛ G̃ (0)
x, DIA(z)=z−1,

G̃ (1)
x, DIA(z)=0,

G̃ (2)
x, DIA(z)=−2z−2ÃDIA(0, 0, z)=−2z−2Rw(z).

Substituting the inverse Laplace transforms of these expressions into the
expansion in (182), we obtain the leading order asymptotics

ÃDIA(ak, 0, r2z) ’ R̃w(r2z) − a2k2 F
.

0
e−zr

2tRw(t) F
t

0
(t − s) Rw(s) ds dt,

for small a and arbitrary r (including the possibility that r is much smaller
than a). Considering now the small r limit as well, we have

ÃDIA(ak, 0, r2z) ’ O(rmin(2, −2b)) − a2k2 F
.

0
Rw(t) F

t

0
(t − s) Rw(s) ds dt

=O(rmin(2, −2b))+a2k2 F
.

0
D2

x(t) dt, (183)

where we have used the low z asymptotics (173) of R̃w(z) and integrated by
parts in the second term using Eq. (78) and Eq. (180). The first term could
be explicitly presented, but we argue now that it must be subdominant in a
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self-consistent renormalized limit. For, if it were dominant, we would, from
Eq. (175), have to choose a=rmin(0, 1+b), but then this would imply, for
b < − 1

2 , that in fact the explicitly presented a2 term in Eq. (183) makes
the dominant contribution to ÃDIA(ak, 0, r2z) in the renormalized limit.
Therefore, the only self-consistent possibility is

ÃDIA(ak, 0, r2z) ’ a2k2 F
.

0
dt D2

x(t),

so that upon substitution into Eq. (175), we choose a=r1/2 and obtain the
following nontrivial renormalized limit

G̃̄x, DIA(k, z)=[z+K°4, DIAk4]−1,

with

K°4, DIA=F
.

0
D2

x(t) dt.

Upon inverse Laplace transformation, we obtain the renormalized equation
(101) and solution (102), which are formally self-consistent for all b < − 1

2 .
We should also consider the possibility of another self-consistent

renormalized solution with a=1, which would indeed be appropriate for
the renormalization of the exact Green’s function when b < − 1. From
inspection of (175), we see that the self-consistency of this choice of rescal-
ing would require as a necessary condition that

0=lim
r Q 0

ÃDIA(k, 0, r2z)=ÃDIA(k, 0, 0)=F
.

0
Rw(t) Ĝx, DIA(k, t) dt.

While Rw(t) has zero integral, one should not expect in general that its
product with Ĝx, DIA(k, t) should continue to have zero integral; there would
have to be a rather special coherent relationship between the two functions
for this to be the case. There is no evident way of checking whether this
special condition holds, so we are naturally led to presume that the self-
consistent renormalized solution with a=r1/2 is the only appropriate one.

As noted in Section 4.2.2, the renormalized solution Ĝ̄x, DIA(k, t) is
unrealizable in the sense that it is not the Fourier transform of a probabil-
ity density function. This unrealizability is, however, a separate issue from
self-consistency of Ĝ̄x, DIA(k, t) as a renormalized solution of the DIA
equations. Our above analysis indicates that the renormalized solution
(101) presented for Ĝ̄x, DIA(k, t) is at least formally self-consistent; its
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unrealizability is an intrinisic defect in the DIA equations. This is verified
by the rigorous computations in Section 5.1.2, which show that the fourth
order cumulant of X(t) is negative at large times, and is consistent with the
results of the formal renormalization procedure conducted here.

C.2. Renormalization of Full Green’s Function

C.2.1. Full Renormalization Under QNA

We start with the explicit formula for the Laplace transform of the
QNA Green’s function (24), and apply the rescaling (70) in Laplace trans-
form space:

G̃(r)
QNA(k, p, z)=r2G̃QNA(ak, lp, r2z)

=[z+a2r−2k2ÃQNA(ak, lp, r2z)+l2r−2p2B̃QNA(ak, lp, r2z)]−1,
(184)

where

˛ ÃQNA(ak, lp, r2z)=o+R̃w(r2z+a2ok2+l2op2),

B̃QNA(ak, lp, r2z)=o+F
R

dq F
C

dz −

2pi
Ẽ(q, z −) G̃0(ak − q, lp, r2z − z −)

(185)

and

G̃0(k, p, z)=(z+o(k2+p2))−1

is the Laplace transform of the Green’s function in the absence of random
velocity fluctuations (see Appendix A). We rewrote the expression for B̃QNA

in the convolution form because it will facilitate the renormalization
process and makes the QNA renormalization formally generalizable to
the DIA renormalization. The required asymptotics for ÃQNA have been
already developed in Section C.1.1; one need only modify those results to
take into account the presence of the p2 term. On the other hand, the func-
tion B̃QNA has three different kinds of limits, depending on the regime. We
consider each regime separately. Note that the QNA equation completely
ignores any effect of the fluctuating cross sweep w(t) on the shear-parallel
motion. Consequently, it is bound to give incorrect equations whenever
w(t) is nonzero and relevant at large-scales and long times (namely, in the
D regime with w(t) ] 0 and in the SD-w regime.) We therefore restrict
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attention to the case w(t) — 0, in which case QNA at least predicts the
correct phase diagram. These renormalization calculations also apply to the
case w(t) ] 0 in those regimes where the fluctuating cross sweep is asymp-
totically irrelevant.

D. In the D regime, the renormalized limit may be taken directly
inside the integrand of B̃QNA in (185):

B̃QNA(ak, lp, r2z) ’ o+F
R

dq F
C

dz −

2pi
Ẽ(q, z −) G̃0(−q, 0, −z −)

=o+F
R

dq F
.

0
dt E(q, t) Ĝ0(−q, 0, t)

=o+F
.

0
dt F

R
dq E(q, t) e−oq2t (186)

The fact that this limit is constant implies that the renormalized limit
Ĝ̄QNA(k, p, t) of Eq. (184) obeys an equation which has ordinary diffusive
behavior in the shear-parallel direction, with l=r and diffusivity given by
Eq. (186).

A careful asymptotic analysis, using for example the dominated con-
vergence theorem, shows that equation (186) converges only within the D
regime. Outside the D regime, low q contributions to the integral which
converge to zero nonuniformly give rise to a total contribution which
diverges in time, ref. 49, Section 3.2.5.2.

Consequently, outside the D regime, the shear-parallel tracer motion
must be superdiffusive (r ± l) for self-consistent renormalization. We next
separately consider the case in which the rescaling functions a and r satisfy
a ± r2/z and a ° r2/z, which correspond to the SD-t regime and the SD-s
regime, respectively.

SD-t. The appropriate limit for Eq. (185) in the SD-t Regime is
obtained by first rescaling the integration variables q Q r2/zq̃, z −

Q r2z̃ − to
zoom in on the low q, low z zone from which the dominant contribution
arises.

B̃QNA(ak, lp, r2z)

=o+r2+2/z F
R

dq̃ F
C

dz̃ −

2pi
Ẽ(r2/zq̃, r2z̃ −) G̃0(ak − r2/zq̃, lp, r2(z − z̃ −)).

(187)
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The choice of the rescaling of the wavenumber q is that which corresponds
to assuming the time scale of the shear-parallel motion due to a shear mode
of wavenumber q is set by the Eulerian correlation time y(q) ’ Ay |q|−z at
small q, and can be justified self-consistently within the SD-t Regime where
Eulerian temporal decorrelation is dominant.

In this regime, we have that r2 ± l2 and a ± r2/z so that the leading-
order large-scale, long-time asymptotics of Eq. (187) may be written:

B̃QNA(ak, lp, r2z)=o+r2+2/z F
R

dq̃ F
C

dz̃ −

2pi
Ē(r2/zq̃) y(r2/zq̃)

× f̃(r2z̃ −y(r2/zq̃)) G̃0(ak − r2/zq̃, lp, r2(z − z̃ −))

’ o+r2/z F
R

dq̃ F
C

dz̃ −

2pi
AE |r2/zq̃|1 − e Ay |r2/zq̃|−z

× f̃(Ay z̃
− |q̃|−z) G̃̄0(k, 0, (z − z̃ −))

’ r2(2 − e − z)/zB̃̄QNA(k, p, z),

where

B̃̄QNA(k, p, z)=AEAy F
R

dq̃ |q̃|1 − e − z F
C

dz̃ −

2pi
f̃(Ay z̃

− |q̃|−z) G̃̄0(k, 0, z − z̃ −)
(188)

Here we have introduced the function G̃̄0(k, p, z) representing the large-
scale, long-time limiting behavior of the zeroth order Green’s function,
which was defined precisely in Eq. (121). As e+z > 2 in the SD-t regime,
we noted that the o term in B̃QNA is asymptotically irrelevant. By changing
the integration variable q̃ to s=Ay z̃

− |q̃|−z, and expressing f̃ directly as the
Laplace transform of f, we can rewrite

B̃̄QNA(k, p, z)=F
C

dz̃ −

2pi
z̃ −D̃̄y(z̃ −) G̃̄0(k, 0, z − z̃ −),

where D̄y(t) is defined in Eq. (119).
Completing now the renormalization, we find the proper rescaling is

l=rz/(2z+e − 2), and the renormalized QNA Green’s function has Laplace
transform:

G̃̄QNA(k, p, z)=[z+ok2+p2B̃̄QNA(k, p, z)]−1
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Multiplying through by the inverse of the right hand side and undoing the
Laplace transform, we obtain the convolution-in-time equation (120) for
the renormalized QNA Green’s function in the SD-t Regime.

SD-s. For the QNA, we consider only the SD-o regime, and assume
that the fluctuating cross sweep w(t) vanishes or is at least asymptotically
irrelevant in the large-scale, long-time limit. In these regimes, the shear-
parallel tracer motion is dominated by spatial decorrelation due to cross-
shear transport, and the appropriate rescalings satisfy a ° r2/z. We there-
fore rescale the integration variables in (185) by z −

Q r2z̃ − and q Q aq̃ to
zoom in on large-scales and long-times, with the space-time rescalings
chosen to preserve the structure of the factor of G̃0, which represents the
effects of spatial decorrelation:

B̃QNA(ak, lp, r2z)

=o+ar2 F
R

dq̃ F
C

dz̃ −

2pi
Ẽ(aq̃, r2z̃ −) G̃0(a(k − q̃), lp, r2(z − z̃ −))

=o+ar2 F
R

dq̃ F
C

dz̃ −

2pi
Ē(aq̃) y(aq̃) f̃(r2z̃ −y(aq̃))

× G̃0(a(k − q̃), lp, r2(z − z̃ −)). (189)

Since a ° r2/z and y(k) ’ Ay |k|−z for small k, the argument of f̃ goes
to infinity under the rescaling. Because f(t) is a smooth function with
f(0)=1, we have f̃(z) ’ z−1 for large z and so

y(aq̃) f̃(r2z̃ −y(aq̃)) ’ r−2z̃ − −1 as r Q 0,

This removes the dependence of the Green’s function on the temporal
decorrelation rate y(k), as we would expect in the SD-o regime. We can
now explicitly compute the contour integral over the Laplace variable z̃ −,
and use the definition (121) to write the limit of Eq. (189) as follows:

B̃QNA(ak, lp, r2z) ’ a2 − er−2B̃̄ (s)
QNA(k, z), (190)

as r Q 0, with

B̃̄ (s)
QNA(k, z)=AE F

R
|q̃|1 − e G̃̄0(k − q̃, 0, z) dq̃.

The additive o term does not contribute to his limit because a2 − er−2

diverges in the SD-o regime, reflecting the fact that the shear-parallel
motion is superdiffusive.
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Substituting the limit (190) into Eq. (184) we find that l should rescale
with a and r=a as l=r2a (e − 2)/2, which correctly implies r=l2/(2+e). The
renormalized QNA Green’s function in the SD-o regime is therefore:

G̃̄QNA(k, p, z)=[z+ok2+p2B̃̄ (s)
QNA(k, z)]−1.

Inverting the Laplace transform, we obtain the following convolution-in-
time equation for the renormalized Green’s function in the SD-o regime:

“Ĝ̄QNA

“t
=−ok2Ĝ̄QNA − p2 F

t

0
B̄ (s)

QNA(k, s) Ĝ̄QNA(k, p, t − s) ds,

where

B̄ (s)
QNA(k, t)=AE F

R
|q̃|1 − e Ĝ̄0(k − q̃, 0, t) dq̃.

From this equation we may deduce equation (122) in the main text for the
case of the SD-o regime.

C.2.2. Full Renormalization Under QLA and RLA

The exact solutions (36) and (67) can be renormalized directly in a
similar manner to that of the QNA, except the calculations are easier to
perform due to the absence of temporal convolutions.

C.2.3. Full Renormalization Under DIA

The renormalization of the DIA equation can be carried out formally
in the same way as we did for the QNA equation in Section C.2.1. The
main difference is that B̃DIA(k, p, z) involves convolution against G̃DIA

instead of G̃0 (compare Eq. (185) and Eq. (47)). This just requires some
extra attention to the self-consistency of the renormalization procedure
since G̃DIA is not an explicitly known function.

C.2.4. Full Renormalization Under MDIA

Rescaling the exact MDIA equation (63) according to Eq. (70), we
obtain

“Ĝ (r)
MDIA

“t
= − a2r−2Dx(t) k2Ĝ (r)

MDIA − l2r−2Dy, MDIA(ak, lp, t/r2) p2Ĝ (r)
MDIA,

where

Dy, MDIA(ak, lp, t/r2)=F
t/r

2

0
F

R
E(q, s)

ĜMDIA(ak − q, lp, s)
ĜMDIA(ak, lp, s)

dq ds. (191)
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The different regimes of shear-parallel transport arise from different kinds
of self-consistent renormalized limits of Dy, MDIA(ak, lp, t/r2). We consider
the renormalization in the phase regimes separately.

D. Within the D regime, the renormalized limit of Eq. (191) may be
taken directly:

Dy, MDIA(ak, lp, t/r2) Q F
.

0
F

R
E(q, s) Ĝ(−q, 0, s) dq ds. (192)

where we used ĜMDIA(0, 0, s)=1. We noted that the MDIA Green’s func-
tion is exact for the shear-transverse dynamics. The result is a constant
which is finite in the D regime, and one may choose a self-consistent diffu-
sive scaling in the shear-parallel direction: r=l. The renormalized Green’s
function is found to be exact since Eq. (192) is equal to the exact shear-
parallel diffusivity Kg

y (116).
One must be careful to check that in fact there is actual convergence

to the limit in (192). Of course this cannot be done rigorously because the
formula for ĜMDIA is not generally known at finite times, but one can check
for self-consistent convergence by substituting Ĝ̄MDIA for ĜMDIA in (191).

In proceeding with this caution, one will find that Eq. (192) is not self-
consistent outside the D regime due to a divergence at low wavenumbers.
A superdiffusive shear-parallel transport (r ± l) is thereby indicated. As
with the other approximations, we find two different kinds of superdiffu-
sive limits depending on whether a ± r2/z or a ° r2/z, corresponding
respectively to the SD-t and SD-s regimes, respectively.

SD-t. In the superdiffusive phase regime where low wavenumber
contributions dominate at large times, and the temporal decorrelation
properties of the flow field set the asymptotic tracer transport rate, it is
natural to rescale the integration variables in (191) by s=s̃/r2 and
q=r2/zq̃, which preserves the structure of the spatio-temporal energy spec-
trum E(q, s) in the renormalized limit as r Q 0:

Dy, MDIA(ak, lp, t/r2)=r2(1 − z)/z F
t

0
ds̃ F

R
dq̃ Ē(q̃r2/z) f(s̃/(r2y(q̃r2/z)))

×
Ĝ (r)

MDIA(k − a−1r2/zq̃, p, s̃)
Ĝ (r)

MDIA(k, p, s̃)

’ r2(1 − z)/z F
t

0
ds̃ F

R
dq̃ AE |q̃r2/z|1 − e f(A−1

y s̃q̃z)

=r2(2 − e − z)/zD (t)
y, MDIA(k, p, t) (193)
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where

D (t)
y, MDIA(k, p, t) — F

t

0
F

R
AE |q̃|1 − e f(s̃/(Ay q̃−z)) dq̃ ds̃,

and this expression is in fact equal to the exact shear-parallel time-depen-
dent diffusivity D̄y(t) given in (119). Consequently, the appropriate rescal-
ing is r=lz/(2z+e − 2), and the MDIA renormalized equation is the exact time-
dependent diffusion equation (118). In taking the limit in (193), we used
the assumption that a ± r2/z. The convergence asserted in (193) can be
checked to be self-consistent precisely within the SD-t regime.

SD-s. The natural choice of rescaling the integration variables in
(191) which zooms in on the low wavenumbers dominating the long-time
transport and preserves the structure of the Green’s functions modelling
the effect of sweeping across the streamlines is: s=s̃/r2, q=aq̃. Then when
a ° r2/z, we obtain the formal limit as r Q 0:

Dy, MDIA(ak, lp, t/r2)

=a/r2 F
t

0
F

R
Ē(aq̃) f(s/(r2y(aq̃)))

Ĝ (r)
MDIA(k − q, p, s)
Ĝ (r)

MDIA(k, p, s)
dq̃ ds̃

’ a/r2 F
t

0
ds̃ F

R
dq̃ AE |aq̃|1 − e

Ĝ̄MDIA(k − q, p, s)

Ĝ̄MDIA(k, p, s)

=a2 − er−2D (s)
y, MDIA(k, p, t)

where

D (s)
y, MDIA(k, p, t) — AE F

t

0
F

R
|q̃|1 − e

Ĝ̄MDIA(k − q, p, s)

Ĝ̄MDIA(k, p, s)
dq̃ ds̃.

The rescaling corresponding to this limit is l=r2a (e − 2)/2=r (4+n(e − 2))/2, and
the indicated convergence is self-consistent in the SD-s regime. The
renormalized MDIA equation in this regime may now seen to be that
reported in (130).

APPENDIX D. DERIVATION OF LONG TIME ASYMPTOTICS FOR

FOURTH ORDER CUMULANTS

D.1. Sweeping Motion

We show here how to rigorously compute the long-time asymptotic
behavior of the QNA and DIA predictions for the fourth order cumulant
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of X(t), which is subject only to a mean zero, Gaussian random sweeping
field w(t), with correlation function

Ow(t+tŒ) w(tŒ)P — Rw(t)=F
R

Ew(w) e iwt dw,

with

Ew(w)=AE, w |w|−b kw(|w|)

The exact results and other closure approximation predictions are all
Gaussian at all times, and require no further discussion.

D.1.1. Derivation of QNA Prediction

Referring to Eq. (25), we write the QNA prediction for the fourth
order cumulant of X(t) as

mQNA
4, 0 (t)=OX4(t)PQNA − 3OX2(t)P,

where

˛OX4(t)PQNA=24 F
t

0
F

s

0
D (0)

x (s − sŒ) D (0)
x (sŒ) dsŒ ds,

OX2(t)P=m2, 0(t)=2 F
t

0
D (0)

x (s) ds.

The Laplace transform of the first term is given by

OX4P ’
QNA=

24
z

(D̃ (0)
x (z))2=

24
z3 (R̃w(z))2,

and its low z asymptotics can be deduced from Eq. (173):

OX4P ’
QNA ’ ˛6(K°x)2 z for b < − 1,

24(C(1+b))2 (KÄ

x)2 z−2b − 3 for − 1 < b < 1.

The long time asymptotics of OX4(t)P can now be obtained by a Tauberian
theorem (72):

OX4(t)PQNA ’ ˛6(K°x)2 for b < − 1,

24
(1+b)2

(C(2+b))2

C(2b+3)
(KÄ

x)2t2b+2 for − 1 < b < 1.
(194)
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Along with the long-time asymptotics for m2, 0(t) in Section 4.2.1, we arrive
at the results presented in Section 5.1.1.

D.1.2. Derivation of DIA Prediction

We first write the formula for the DIA approximation of OX4(t)P:

OX4(t)PDIA=OX4(t)PDIA, I+OX4(t)PDIA, II,

where

˛OX4(t)PDIA, I=24 F
t

0
F

s

0
D (0)

x (s − sŒ) D (0)
x (sŒ) dsŒ ds,

OX4(t)PDIA, II=−24 F
t

0
(t − s)(D(0)

x (s))2 ds.

The first term is identical to OX4(t)PQNA, with asymptotics given by
Eq. (194).

Using Eq. (173), we find that D (0)
x (s) decays rapidly enough for b < − 1

2
so that (D (0)

x (s))2 is integrable and

OX4(t)PDIA, II ’ − 24t F
t

0
(D(0)

x (s))2 ds for b < − 1
2 .

as t Q .. On the other hand for b > − 1
2 , the integral for OX4(t)PDIA, II is

dominated by the large s contribution, which may be computed using the
large t asymptotics of D (0)

x (t) inferred from Eq. (173):

D (0)
x (t) ’ KÄ

xtb for − 1 < b < 1.

We thereby find

OX4(t)PDIA, II ’ − 24t2 F
1

0
(1 − u)(D(0)

x (tu))2 du

’ − 24t2+2b(KÄ

x)2 F
t

0
(1 − u) u2b du

=−24
(KÄ

x)2

(2b+1)(2b+2)
t2+2b.

Putting together the asymptotics for OX4(t)PDIA, I and OX4(t)PDIA, II, we
obtain the results stated in Section 5.1.2.
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D.2. Steady Random Shear Flow with Molecular Diffusion

We present here the main steps in the derivation of the long time
asymptotics reported in Section 5.2 for the fourth order cumulant m0, 4(t) of
the tracer displacement along a steady shear:

v(x, y, t)=1 0
v(x)

2

when molecular diffusion is present (o > 0).
It will be convenient for us first to exhibit the asymptotic derivations

in the following sequence: the exact result (Section D.2.1), the MDIA
(Section D.2.2), the QNA (Section D.2.3), and the DIA (Section D.2.4).
The reason for this ordering is that the MDIA prediction for m0, 4(t) in this
special model is equal to one of the summands in the exact formula, and the
DIA formula for m0, 4(t) is equal to the QNA formula plus an additional
term (which creates some cancellation in the leading order asymptotics).

D.2.1. Exact Formula for Long Time Asymptotics

Alternative Finite Time Formula. Our asymptotic calculation is
facilitated by rewriting the exact formula in (19) for m0, 4(t) in the following
equivalent form for the special submodel under consideration:

m0, 4(t)=24 F
t

0
ds1 F

s1

0
ds2 F

s2

0
ds3 F

s3

0
ds4 F

R
2

dq dq −

× Ē(|q|) Ē(|q −|) e−oq2s12

× (e−o(q − qŒ)2 s23 − e−o(q2+qŒ2) s23)(e−oq2s34+e−oqŒ2s34). (195)

We use here a shorthand (which will also appear in the finite-time formulas
for the approximate closure formulas):

sij — si − sj.

The formula (195) can be obtained from Eq. (19) by reordering the inte-
gration variables so that t \ s1 \ s2 \ s3 \ s4 \ 0, or directly using an
argument from ref. 75. A Laplace transform simplifies the formula by
replacing the time integrations with rational functions of z, thanks to the
convolutive structure of the integrand which is in turn a consequence of the
Markovian nature of the cross-shear transport:
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m̃0, 4(z)=24z−2 F
R

2
dq dqŒ Ē(|q|) Ē(|qŒ|)

1
z+oq2

×1 1
z+o(q − q −)2 −

1
z+o(q2+q −2)

21 1
z+oq2+

1
z+oq −2

2

=48oz−2 F
R

2
dq dqŒ Ē(|q|) Ē(|qŒ|)

×
1

z+oq2

qq −

(z+o(q − q −)2)(z+o(q2+q −2))
1 1

z+oq2+
1

z+oq −2
2 .

The long time limit of m0, 4(t) will be inferred, through the Tauberian
theorem, (72) in terms of the low z asymptotics.

It will be useful to change integration variables to obtain the scaling
factors of o more easily:

m̃0, 4(z)=48o−1z−2 F
R

2
dq̃ dq̃ − Ē(o−1/2 |q̃|) Ē(o−1/2 |q̃ −|)

×
1

z+q̃2

q̃q̃ −

(z+(q̃ − q̃ −)2)(z+(q̃2+q̃ −2))
1 1

z+q̃2+
1

z+q̃ −2
2 . (196)

We will separately analyze the cases e < − 1
2 and e > − 1

2 .

Case: e<− 1

2
. The dominant contribution to m̃0, 4(z) comes from the

diagonal in wavenumber space q̃=q̃ −, as we will rigorously demonstrate
later. A heuristic way to see this is to note that taking a formal z Q 0 limit
under the integral in (196) will lead to a divergent integral due to the factor
(q̃ − q̃ −)−2. So let us consider first the auxiliary function m̃g

0, 4(z) obtained by
replacing the appearance of q̃ − everywhere in (196) by q̃, except where it
appears in the denominator through the difference q̃ − q̃ −:

m̃g
0, 4(z)=48o−1z−2 F

R
2

Ē(o−1/2 |q̃|) Ē(o−1/2 |q̃|)

×
2q̃q̃ −

(z+(q̃ − q̃ −)2)(z+2q̃2)(z+q̃2)2 dq̃ dq̃ −.

Now we change integration variable to q̃ −=q̃+t `z:

m̃g
0, 4(z)=48o−1z−5/2 F

R
2

dq̃ dt(Ē(o−1/2 |q̃|))2 2q̃(q̃+t `z)
(1+t2)(z+2q̃2)(z+q̃2)2 .

(197)

Closure Approximations: A Comparative Study 665



We find by the dominated convergence theorem that the z Q 0 limit may be
taken directly within the integrand of Eq. (197) when e < − 1

2 , so that

m̃g
0, 4(z) ’ 96o−1z−5/2 F

R
dq̃(Ē(o−1/2 |q̃|))2 q̃−4 F

R
dt(1+t2)−1

=
96p

o5/2z5/2 F
.

0
(Ē(q))2 q−4 dq.

as z Q 0. By the Tauberian theorem, (72) as t Q .,

mg
0, 4(t) ’ Kg

4 t3/2,

Kg
4 =

1
C(5/2)

96p

o5/2 F
.

0
(Ē(q))2 q−4 dq=

128 `p

o5/2
F

.

0
(Ē(q))2 q−4 dq.

(198)

All that is left is for us to show that m0, 4(t)=mg
0, 4(t)+o(t3/2), so that

the long time asymptotics of m0, 4(t) are given by Eq. (198). This will follow
from the fact

|m̃0, 4(z) − m̃g
0, 4(z)|=o(z−5/2), (199)

which we now prove.
We begin, as usual, by estimating the difference between the integrals

represented by m0, 4(z) and mg
0, 4(z) in terms of the absolute difference of

their integrands:

|m̃0, 4(z) − m̃g
0, 4(z)| [ 48o−1z−2 F

R
2

dq̃ dq̃ −
q̃Ē(o−1/2 |q̃|)

(z+q̃2)(z+(q̃ − q̃ −)2)

× :Ē(o−1/2 |q̃ −|)
q̃ −

z+(q̃2+q̃ −2)
1 1

z+q̃2+
1

z+q̃ −2
2

− Ē(o−1/2 |q̃|)
q̃

z+2q̃2
1 2

z+q̃2
2: . (200)

Now, we break up the absolute value into a sum of two parts: one involv-
ing differences in the numerator and one involving differences in the
denominator. There are two natural ways to do this, and it helps us to
choose carefully between the alternatives depending on the relative magni-
tude of q̃ and q̃ −:
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: q̃ −Ē(o−1/2 |q̃ −|)
z+(q̃2+q̃ −2)

1 1
z+q̃2+

1
z+q̃ −2

2−
q̃Ē(o−1/2 |q̃|)

z+2q̃2
1 2

z+q̃2
2:

[
2 |q̃ −Ē(o−1/2 |q̃ −|) − q̃Ē(o−1/2 |q̃|)|

(z+2q̃2)(z+q̃2)

+Ē(o−1/2 |q̃ −|) : q̃ −

z+q̃2+q̃ −2
1 1

z+q̃2+
1

z+q̃ −2
2−

1
z+2q̃2

2
z+q̃2

:

for |q̃| \ |q̃ −|,

2 |q̃ −Ē(o−1/2 |q̃ −|) − q̃Ē(o−1/2 |q̃|)|
z+q̃2+q̃ −2

1 1
z+q̃2+

1
z+q̃ −2

2

+Ē(o−1/2 |q̃|) : q̃
z+q̃2+q̃ −2

1 1
z+q̃2+

1
z+q̃ −2

2−
1

z+2q̃2

2
z+q̃2

:

for |q̃| [ |q̃ −|.

Simplifying these expressions through the use of some elementary inequali-
ties, we achieve:

: q̃ −Ē(o−1/2 |q̃ −|)
z+(q̃2+q̃ −2)

1 1
z+q̃2+

1
z+q̃ −2

2−
q̃Ē(o−1/2 |q̃|)

z+2q̃2
1 2

z+q̃2
2:

[ ˛2 |Ē(o−1/2 |q̃ −|) q̃ − − Ē(o−1/2 |q̃|) q̃|
(z+2q̃2)(z+q̃2)

+
3Ē(o−1/2 |q̃ −|) |q̃q̃ −| |q̃ − q̃ −|
(z+q̃2)(z+2q̃2)(z+q̃ −2)

for |q̃| \ |q̃ −|,

2 |Ē(o−1/2 |q̃ −|) q̃ − − Ē(o−1/2 |q̃|) q̃|
(z+q̃ −2)(z+q̃2)

+
3Ē(o−1/2 |q̃|) |q̃q̃ −| |q̃ − q̃ −|
(z+q̃2)(z+2q̃2)(z+q̃ −2)

for |q̃| [ |q̃ −|.

(201)

We next note the following inequality, valid for all infrared scaling expo-
nent e < 1,

|qĒ(|q|) − q −Ē(|q −|)| [ ˛
Ceq −1 − e |q − q −| for q [ q − [ 2,

Ceq1 − e |q − q −| for q − [ q [ 2,

Fe(q)
|q − q −|

|q −|
for 1 [ q [ q −,

Fe(q −)
|q − q −|

|q|
for 1 [ q − [ q,

Ceq1 − e+Fe(q −) for q [ 1, 2 [ q −,

Ceq −1 − e+Fe(q) for q − [ 1, 2 [ q.

(202)
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Here Ce is some finite constant and Fe is a smooth integrable function.
Both Ce and Fe may depend on e but on no other parameter. Substituting
now Eq. (202) into Eq. (201), and the latter inequality into Eq. (196), we
obtain an estimate for m̃0, 4(z) − m̃g

0, 4(z) as a sum of several integrals over
certain intervals of q̃ and q̃ −, each of which may be straightforwardly
estimated. There results:

|m̃0, 4(z) − m̃g
0, 4(z)| [ C̃e[(1+ln z−1) z−3 − e+z−2] for e < 1.

The error is therefore o(z−5/2) for e < − 1
2 , as claimed in (199).

Case: e>− 1

2
. There is sufficient energy at low wavenumbers so that

the dominant contribution to the integral in (196) shifts to the origin. This
contribution can be isolated by rescaling integration variables q̃=z1/2t,
q̃ −=z1/2t −:

m̃0, 4(z)=48o−1z−4 F
R

2
dt dt − Ē(`z/o |t|) Ē(`z/o |t −|)

×
1

1+t2

tt −

(1+(t − t −)2)(1+(t2+t −2))
1 1

1+t2+
1

1+t −2
2 .

Then, using the low wavenumber asymptotics for the energy spectrum, we
have formally for z Q 0:

m̃0, 4(z) ’ 48o−1z−4 F
R

2
dt dt − AE(`z/o |t|)1 − e AE(`z/o |t −|)1 − e

×
1

1+t2

tt −

(1+(t − t −)2)(1+(t2+t −2))
1 1

1+t2+
1

1+t −2
2

=48A2
Eo e − 2z−3 − e F

R
2

dt dt − 1 1
1+t2+

1
1+t −2

2

×
1

1+t2

t |t|1 − e t − |t −|1 − e

(1+(t − t −)2)(1+(t2+t −2))
. (203)

We shall justify this step rigorously at the end of the calculation. At the
moment, we collapse the integration domain onto the first quadrant:

m̃0, 4(z) ’ 384A2
Eo e − 2z−3 − e F

.

0
dt F

.

0
dt −

1
1+t2

1 1
1+t2+

1
1+t −2

2

×
t3 − et −3 − e

(1+(t − t −)2)(1+(t+t −)2)(1+(t2+t −2))
.
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Applying now the Tauberian theorem for the Laplace transform, we obtain
the result stated in Section 5.2.1.

We are just left to justify the formal asymptotic statement (203). To do
this, we note that Ē(k) can be bounded on the whole positive real axis by a
constant multiple of k e − 1 since Ē(k) is, by assumption, bounded by some
multiple of k1 − e at small k and by a monotonically decreasing integrable
function at large k. Therefore, the dominated convergence theorem can be
applied in this case to show that Eq. (203) is the rigorously correct asymp-
totics whenever the integrand in the limiting expression is absolutely inte-
grable. This condition can be verified to hold for − 1

2 < e < 2 by chopping
up the integration domain into regions on which simple bounds are pos-
sible for each factor of the integrand.

D.2.2. Long Time Asymptotics For MDIA

Fortunately, the MDIA prediction for m0, 4(t) can be related in a
simple way to the exact formula. To see this, we recast the formula (64) for
the MDIA prediction, specialized to the present submodel, into a form
comparable with the exact formula (195) used above.

mMDIA
0, 4 (t)=24 F

t

0
ds(t − s) F

s

0
dsŒ(s − sŒ) F

R
2

dq dqŒ Ē(|q|) Ē(|qŒ|)

× e−o(q2s+qŒ2sŒ)(e−2oqqŒsŒ − 1)

=24 F
t

0
ds1 F

s1

0
ds2 F

s2

0
ds3 F

s3

0
ds4 F

R
2

dq dqŒ Ē(|q|) Ē(|qŒ|)

× e−o(q2s14+qŒ2s23)(e−2oqqŒs23 − 1)

=24 F
t

0
ds1 F

s1

0
ds2 F

s2

0
ds3 F

s3

0
ds4 F

R
2

dq dqŒ Ē(|q|) Ē(|qŒ|)

× e−oq2s12(e−o(q − qŒ)2 s23 − e−o(q2+qŒ2)s23) e−oq2s34.

The substantial step in this transformation is indicated by the second
equality, in which the integration variables s and sŒ were replaced by s14

and s23 respectively, where sij — si − sj. The factor (t − s)(s − sŒ) corresponds
to the two-dimensional area of phase space available to the points 0 [ s1 [

s2 [ s3 [ s4 [ t subject to the constraints s=s14 and sŒ=s23. In the last
equality, we changed variables q −

Q − q −.
We observe now that the MDIA formula coincides with the exact

formula (195) for m0, 4(t) except that the factor

[e−oq2s34+e−oqŒ2s34]
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in the exact formula has been replaced by

e−oq2s34

in the MDIA approximation. Therefore, the long time asymptotics of
mMDIA

0, 4 (t) may be computed in the same way as the exact results were; some
terms are just omitted.

We demonstrate finally the remarkable bound on the relative magni-
tude of the ratio of the MDIA approximation to the exact value of m0, 4(t)
at all times:

1
2

[
mMDIA

0, 4 (t)
m0, 4(t)

[ 1.

To compare the MDIA and exact formulas most clearly, let us re-
express them by collapsing the integration over q and qŒ to the first
quadrant, and then symmetrize the integrand with respect to the integra-
tion variables:

˛ m0, 4(t)=48 F
t

0
ds1 F

s1

0
ds2 F

s2

0
ds3 F

s3

0
ds4 F

R
2

dq dq − Ē(|q|) Ē(|q −|)

× e−o(q2+qŒ2) s23(cosh(2oqq −s23) − 1)

× (e−oq2s12+e−oqŒ2s12)(e−oq2s34+e−oqŒ2s34)

mMDIA
0, 4 (t)=48 F

t

0
ds1 F

s1

0
ds2 F

s2

0
ds3 F

s3

0
ds4 F

R
2

dq dqŒ Ē(|q|) Ē(|qŒ|)

× e−o(q2+qŒ2) s23(cosh(2oqq −s23) − 1)(e−oq2(s12+s34)+e−oqŒ2(s12+s34)).

Now we need only observe that both integrands are manifestly non-
negative,

(e−oq2(s12+s34)+e−oqŒ2(s12+s34)) [ (e−oq2s12+e−oqŒ2s12)(e−oq2s34+e−oqŒ2s34),

and

(e−oq2(s12+s34)+e−oqŒ2(s12+s34)) − 1
2 (e−oq2s12+e−oqŒ2s12)(e−oq2s34+e−oqŒ2s34)

=1
2 (e−oq2s12 − e−oqŒ2s12)(e−oq2s34 − e−oqŒ2s34) \ 0

D.2.3. Long Time Asymptotics For QNA

From Eq. (29), the fourth order cumulant for the shear-parallel tracer
motion is predicted by QNA to be:

mQNA
0, 4 (t)=OY4(t)PI

QNA − 3(OY2(t)PI
QNA)2, (204)
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where

˛OY4(t)PI
QNA=24 F

t

0
ds F

s

0
dsŒ D (o)

y (s − sŒ) D (o)
y (sŒ),

OY2(t)PI
QNA — mI

0, 2(t)=2 F
t

0
ds D (o)

y (s).

Note that OY4(t)PI
QNA and mI

0, 2(t) are, respectively, the QNA predictions
for the fourth order moment and second order cumulant m0, 2(t) of the
shear-parallel tracer displacement without the terms proportional to
powers of o.

Working in Laplace transform space, we have

˛ m̃I
0, 2(z)=4z−2 F

.

0
dq Ē(q)/(z+oq2),

OY4(t)PI
QNA=6z(m̃I

0, 2(z))2,
(205)

so the long time asymptotics of OY4(t)PI
QNA can be computed readily from

the asymptotics of mI
0, 2(t). The leading order asymptotics of mI

0, 2(t) can be
readily obtained from Eq. (134). However, the leading order asymptotics
for each of the terms in Eq. (204) cancel each other for e < 0, so we will
need to work the asymptotics of each term out to second order for e < 0.
As we show below,

m̃I
0, 2(z) ’ ˛

2C( − (2+e)/2) C((4+e)/2) AE

o (2 − e)/2 z−2 − e/2 for 0 < e < 2,

2KI
yz−2 −

2C( − e/2) C((2+e)/2) AE

o (2 − e)/2 z−2 − e/2 for − 2 < e < 0,

2KI
yz−2 − KIb

y z−1 for e < − 2,
(206)

as z Q 0, where the scaling coefficients involving integrals are

KI
y=2 F

.

0

Ē(q)
oq2 dq, KIb

y =4 F
.

0

Ē(q)
o2q4 dq.

The results stated in Section 5.2.3 are now derived by simple combi-
nation of the above equations and the use of the Tauberian theorem.
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Asymptotic Computation of m̃ I
0, 2(z ) for e<0. We begin by

separating out the leading order contribution:

m̃I
0, 2(z)=2KI

yz−2+m̃Ib
0, 2(z)

where KI
y — 2 >.

0
Ē(q)

oq2 dq and the correction to the leading order asymptotics is

m̃Ib
0, 2(z) —

4
z2 F

.

0
dq 5 Ē(q)

z+oq2 −
Ē(q)
oq2

6=−
4

oz
F

.

0
dq

Ē(q)
(z+oq2) q2 .

To obtain the results stated in Eq. (206), we now just need to compute the
leading order asymptotics for this correction term m̃Ib

0, 2(z) for e < 0. But this
can be mapped onto the problem of finding the leading order asymptotics
for m̃I

0, 2(z) by replacing Ē(q) with − Ē(q) z/(oq2). In this way, we deduce
the results in (206) after recognizing C(−(4+e)/2) C((6+e)/2)=C(−e/2)
× C((2+e)/2) by a Gamma function identity, ref. 43, Section 1.2.2.

D.2.4. Long Time Asymptotics for DIA

The DIA prediction for the fourth order cumulant may be written as
the sum of the QNA prediction and an extra term:

˛ mDIA
0, 4 (t)=mQNA

0, 4 (t)+mDIA, III
0, 4 (t),

mDIA, III
0, 4 (t)=24 F

t

0
ds(t − s) F

s

0
dsŒ(s − sŒ) F

R
2

dq dqŒ

× Ē(|q|) Ē(|qŒ|) e−oq2s − o(qŒ2+2qqŒ) sŒ.

(207)

The long-time asymptotics of mQNA
0, 4 (t) were developed in (D.2.3), and here

we focus on the additional term.
Taking a Laplace transform, we obtain

m̃DIA, III
0, 4 (z)=

24
z2 F

R
2

dq dq −
Ē(|q|) Ē(|q −|)

(z+oq2)2 (z+o(q+q −)2)
.

We analyze this term much as we did the summands in the exact formula
for m̃0, 4(z) in (D.2.1). Since the techniques are very similar (and much
easier in the present context), we simply sketch the asymptotic calculation.
The asymptotics presented in Section 5.2.4 can be deduced by combining
the following results with those for mQNA

0, 4 (t) from Section 5.2.3. We note
that in the regime − 1 < e < 0, the leading order contribution from
mDIA, III

0, 4 (t) exactly cancels that of mQNA
0, 4 (t). We did not pursue an accurate

description of the asymptotics for mDIA
0, 4 (t) in this regime because they

cannot be general be expressed in terms comparable to those of the other
asymptotics presented in Section 5.
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Case: e<−1. In this domain, the dominant contribution comes
from the domain near the diagonal q+q −=0. We therefore zoom onto this
diagonal by the change of variables

q −=−q+t `z/o,

which yields

m̃DIA, III
0, 4 (z)=

24
z5/2o1/2 F

R
2

Ē(|q|) Ē(|q − t `z/o|)
(z+oq2)2 (1+t2)

dq dt.

Using the same sort of approximation error estimates as in Section D.2.1, it
can be rigorously shown that for e < − 1,

m̃DIA, III
0, 4 (z) ’

24
z5/2o1/2 F

R
2

(Ē(|q|))2

(oq2)2 (1+t2)
dq dt

=
24p

z5/2o5/2 F
R

dq(Ē(|q|))2 q−4.

as z Q 0. Note carefully that the integral is actually finite for all e < − 1
2 , but

only provides the correct asymptotics for e < − 1.
The long time asymptotics of mDIA, III

0, 4 (t) are obtained from those of
m̃DIA, III

0, 4 (z) via the Tauberian theorem:

mDIA, III
0, 4 (t) ’ 32p1/2o−5/2t3/2 F

R
dq(Ē(|q|))2 q−4 for e < − 1.

Case: −1<e<0. In this regime, the integral expression for
m̃DIA, III

0, 4 (z) is dominated by a contribution from all along the vicinity of the
q=0 axis. Accordingly rescaling the integration variable q=`z/o t, we
compute the following formal z Q 0 asymptotics:

m̃DIA, III
0, 4 (z) ’ 24o−1/2z−3/2 F

R
2

dt dq −
Ē(`z/o |t|) Ē(|q −|)

z2(1+t2)2 (z+o(`z/o q+q −)2)

’ 24o−3/2z−7/2 F
R

2
dt dq −

AE(z/o) (1 − e)/2 |t|1 − e Ē(|q −|)
(1+t2)2 q −2

=48o (e − 4)/2z−3 − e/2AEB 11 −
e

2
, 1+

e

2
2 F

.

0
dq − Ē(q −) q − −2, (208)

where B(x, y)=(C(x) C(y))/C(x+y) is the beta function.
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We note that the limit stated in (208) is finite for − 2 < e < 0, but is
actually the correct limit only over the range − 1 < e < 0. To prepare for a
legitimate dominated convergence argument, we define the function

m̃gDIA, III
0, 4 (z) —

24
z2 F

R
2

dq dq −
Ē(|q|) Ē(|q −|)

(z+oq2)2 (z+oq −2)

and establish the estimate

|m̃DIA, III
0, 4 (z) − m̃gDIA, III

0, 4 (z)|=O(z−5/2+z−(5+e)/2+z−(3+e)), (209)

which is negligible compared to the claimed z−(3+e/2) limiting behavior (208)
of m̃DIA, III

0, 4 (z) at small z when − 1 < e < 0. The estimate (209) is obtained by
dividing the integration domain into portions on which simple estimates of
the differences of the integrands of m̃DIA, III

0, 4 (z) and m̃gDIA, III
0, 4 (z) can be made.

A dominated convergence theorem argument can now be applied to
prove that m̃gDIA, III

0, 4 (z) converges to the limit on the final right hand side of
Eq. (208) whenever that limit is absolutely integrable because a finite mul-
tiple of the integrand appearing in the limit serves as a dominating function
for the integrand of m̃gDIA, III

0, 4 (z). Therefore, m̃gDIA, III
0, 4 (z) converges to the

limit in (208) for − 2 < e < 0, but the actual function of interest m̃DIA, III
0, 4 (z)

converges to this limit only over the parameter domain − 1 < e < 0 where
m̃gDIA, III

0, 4 (z) is a good approximation of m̃DIA, III
0, 4 (z).

Finally returning to the physical time domain via a Tauberian
theorem, we have

mDIA, III
0, 4 (t) ’ 48o (e − 4)/2t2+e/2AE

B(1 − e

2 , 1+e

2)
C(3+e

2)
F

.

0
dq − Ē(q −) q − −2

=−24eo (e − 4)/2AEt2+e/2C 1 −
4+e

2
2 F

.

0
dq − Ē(q −) q − −2.

as t Q .. This term exactly cancels that of mQNA
0, 4 (t) for − 1 < e < 0, so

mDIA
0, 4 (t)=mQNA

0, 4 (t)+mDIA, III
0, 4 (t)=o(t2+e/2) for − 1 < e < 0.

Case: 0<e<2. In this regime, the integral over wavenumbers has
dominant contribution from small wavenumbers so we now rescale

q=t `z/o, q −=t −
`z/o.
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Then a formal computation gives for z Q 0:

m̃DIA, III
0, 4 (z) ’

24
z4o

F
R

2
dt dt −

Ē(|t `z/o|) Ē(|t −
`z/o|)

(1+t2)2 (1+(t+t −)2)

’
24
z4o

F
R

2
dt dt −

AE |t `z/o|1 − e AE |t −
`z/o|1 − e

(1+t2)2 (1+(t+t −)2)

=24A2
Eo e − 2z−3 − e F

R
2

dt dt −
|tt −|1 − e

(1+t2)2 (1+(t+t −)2)
.

This asymptotic statement can be rigorously verified for 0 < e < 2 by a
dominated convergence theorem, as in Section D.2.1.

A Tauberian theorem yields the long-time asymptotics for mDIA, III
0, 4 (t):

mDIA, III
0, 4 (t) ’

24A2
E

C(3+e)
o e − 2t2+e F

R
2

dt dt −
|tt −|1 − e

(1+t2)2 (1+(t+t −)2)
.

D.2.5. Numerical Evaluation of Integrals for Flatness Factors

Some of the scaling coefficients for the asymptotic behavior of the
exact fourth order cumulants, as well as their DIA and MDIA approxima-
tions, involve integrals for which we do not know a simple closed form
expression in terms of special functions. We therefore integrate them
numerically, using MATLAB, and plot their values in Fig. 8. Some care
must be taken in these numerical quadratures because, for certain values
of e, the integrands are slowly decaying. Moreover, the integrands for the
exact (136) and MDIA formulas (138) exhibit a pronounced ridge near
q=qŒ ± 1, and the DIA formula exhibits a similar relative spike near
q=−qŒ for |q| ± 1. We therefore preprocess these integrands, through
changes of variables and subtraction of the ridge contribution as suggested
in ref. 1, so that the only integrals which must be evaluated numerically
involve bounded functions over bounded square domains. These numerical
quadratures are checked against separate analytical evaluations of the
integral formulas which are possible at e=0 and e=1.
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